Do you play hockey?

Algebra Level 3

Let T n = 1 + 2 + + n T_n = 1 + 2 + \cdots + n . What is T 1 + T 2 + + T 1234 1 + 2 + + 1234 \dfrac{T_1 + T_2 + \cdots + T_{1234} }{1 + 2 + \cdots + 1234} ?


The answer is 412.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Here's a novel but refreshingly nice way to solve this problem.

First, note that:

T n = 1 + 2 + + n = k = 1 n k = n ( n + 1 ) 2 \begin{aligned} T_{n} = 1 + 2 + \dots + n = \sum_{k=1}^{n} k = \frac{n(n+1)}{2} \end{aligned}

Given that:

1 2 + 2 2 + + n 2 = k = 1 n k 2 = n ( n + 1 ) ( 2 n + 1 ) 6 \begin{aligned} 1^2 + 2^2 + \dots + n^2 = \sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6} \end{aligned}

then:

k = 1 n T k = k = 1 n k ( k + 1 ) 2 = 1 2 k = 1 n k 2 + 1 2 k = 1 n k = n ( n + 1 ) ( 2 n + 1 ) 12 + n ( n + 1 ) 4 = n ( n + 1 ) ( 2 n + 1 ) 12 + 3 n ( n + 1 ) 12 = n ( n + 1 ) ( 2 n + 1 + 3 ) 12 = n ( n + 1 ) ( n + 2 ) 6 \begin{aligned} \sum_{k=1}^{n} T_{k} &= \sum_{k=1}^{n} \frac{k(k+1)}{2} \\ &= \frac{1}{2} \sum_{k=1}^{n} k^2 + \frac{1}{2} \sum_{k=1}^{n} k \\ &= \frac{n(n+1)(2n+1)}{12} + \frac{n(n+1)}{4} \\ &= \frac{n(n+1)(2n+1)}{12} + \frac{3n(n+1)}{12} \\ &= \frac{n(n+1)(2n+1+3)}{12} \\ &= \frac{n(n+1)(n+2)}{6} \end{aligned}

Let:

S n = T 1 + T 2 + + T n 1 + 2 + + n \begin{aligned} S_n = \frac{T_1 + T_2 + \dots + T_n}{1+2+\dots+n} \end{aligned}

So:

S n = n ( n + 1 ) ( n + 2 ) 6 n ( n + 1 ) 2 = n + 2 3 \begin{aligned} S_n &= \frac{\frac{n(n+1)(n+2)}{6}}{\frac{n(n+1)}{2}} \\ &= \frac{n+2}{3} \end{aligned}

and:

S 1234 = 1236 3 = 412 \begin{aligned} S_{1234} = \frac{1236}{3} = 412 \end{aligned}

as required.

Very neat solution!!!

There's a shorter proof for T 1 + T 2 + + T n = n ( n + 1 ) ( n + 2 ) 6 T_1 + T_2 + \cdots + T_n = \dfrac{n(n+1)(n+2)}6 . Hint: read the title.

Pi Han Goh - 4 years, 8 months ago

Log in to reply

Are you talking about the hockey stick method in Pascal triangle. As the triangular numbers are also present in Pascal triangle we could use that fact too . Right?😀

Anurag Pandey - 4 years, 8 months ago

Log in to reply

YESSSSSSSSSSSSSS

Pi Han Goh - 4 years, 8 months ago

Log in to reply

@Pi Han Goh Just read it up. I guess it makes sense, from a combinatorial point of view. Especially given that a triangular number T n T_{n} can also be expressed as ( n + 1 2 ) {n+1 \choose 2} , one can derive that:

i = 1 n T i = i = 1 n ( i + 1 2 ) = ( n + 2 3 ) \sum_{i=1}^{n} T_{i} = \sum_{i=1}^{n} {i+1 \choose 2} = {n+2 \choose 3}

A Former Brilliant Member - 4 years, 8 months ago

Log in to reply

@A Former Brilliant Member EXACTLYYY! Hope you enjoyedd this question

Pi Han Goh - 4 years, 8 months ago
Chew-Seong Cheong
Sep 21, 2016

Relevant wiki: Sum of n, n², or n³

Q n = T 1 + T 2 + T 3 + . . . + T n 1 + 2 + 3 + . . . + n = n + 2 ( n 1 ) + 3 ( n 2 ) + . . . + n 1 + 2 + 3 + . . . n = k = 1 n k ( n + 1 k ) k = 1 n k = ( n + 1 ) k = 1 n k k = 1 n k 2 k = 1 n k = n + 1 k = 1 n k 2 k = 1 n k = n + 1 n ( n + 1 ) ( 2 n + 1 ) 6 n ( n + 1 ) 2 = n + 1 2 n + 1 3 = n + 2 3 \begin{aligned} Q_n & = \frac {T_1+T_2+T_3+...+T_n}{1+2+3+...+n} \\ & = \frac {n+2(n-1)+3(n-2)+...+n}{1+2+3+...n} \\ & = \frac {\sum_{k=1}^n k(n+1-k)}{\sum_{k=1}^n k} \\ & = \frac {(n+1)\sum_{k=1}^n k - \sum_{k=1}^n k^2}{\sum_{k=1}^n k} \\ & = n+1 - \frac {\sum_{k=1}^n k^2}{\sum_{k=1}^n k} \\ & = n+1 - \frac {\frac {n(n+1)(2n+1)}6}{\frac {n(n+1)}2} \\ & = n+1 - \frac {2n+1}3 \\ & = \frac {n+2}3 \end{aligned}

Q 1234 = 1234 + 2 3 = 412 \begin{aligned} \implies Q_{1234} & = \frac {1234+2}3 = \boxed{412} \end{aligned}

Zee Ell
Sep 21, 2016

Let’s solve the problem in general (for n N , n > 1 ) first: \text {Let's solve the problem in general (for } n \in \mathbb {N} , n > 1 \text {) first: }

T n = 1 + 2 + . . . + n = n ( n + 1 ) 2 = 0.5 ( n 2 + n ) T_n = 1+2+...+n = \frac {n(n+1)}{2} = 0.5(n^2 + n)

T 1 + T 2 + . . . + T n 1 + 2 + . . . + n = 0.5 ( ( 1 2 + 2 2 + . . . + n 2 ) + ( 1 + 2 + . . . + n ) ) 1 + 2 + . . . + n = \frac {T_1+T_2+...+T_n}{1+2+...+n} = \frac { 0.5 ((1^2 + 2^2 + ... + n^2) + (1+2+...+n)) }{1+2+...+n} =

= 0.5 ( n ( n + 1 ) ( 2 n + 1 ) 6 + 0.5 n ( n + 1 ) ) 0.5 n ( n + 1 ) = n ( n + 1 ) ( 2 n + 1 6 + 0.5 ) n ( n + 1 ) = 2 n + 1 6 + 0.5 = 2 n + 4 6 = \frac { 0.5 ( \frac {n(n+1)(2n+1)}{6}+ 0.5n(n+1)) }{0.5n(n+1)} = \frac { n(n+1)( \frac {2n +1}{6} + 0.5) }{n(n+1)} = \frac {2n +1}{6} + 0.5 =\frac {2n +4}{6}

In our case, n = 1234 :

2 n + 4 6 = 2 × 1234 + 4 6 = 2472 6 = 412 \frac {2n +4}{6} = \frac {2 × 1234 +4}{6} = \frac {2472}{6} = \boxed {412}

Steve Fan
Apr 18, 2020

Tetrahedral number / triangular number

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...