Does it Have it?

( x 1 ) ( x 2 2 ) ( x 3 3 ) ( x 20 20 ) \big(x - 1\big)\big(x^2 - 2\big)\big(x^3 - 3\big)\cdots \big(x^{20} - 20\big)

What is the coefficient of x 203 x^{203} in the expansion of this expression?

7 -7 0 0 6 6 10 10 13 13

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

6 solutions

Chew-Seong Cheong
Apr 18, 2018

Let the expression be P ( x ) P (x) . We get the highest power of x x in the expansion of P ( x ) P(x) by multiplying all the x k x^k together, where k = 1 , 2 , 3...20 k=1,2,3...20 . That is k = 1 20 k = 20 ( 21 ) 2 = 210 \displaystyle \sum_{k=1}^{20} k = \frac {20(21)}2 = 210 and the coefficient of x 210 x^{210} is 1 1 . Similarly, we get the term with x 209 x^{209} by multiplying the 1 -1 of x 1 x-1 with the rest of x k x^k , that is 1 x 209 -1\cdot x^{209} giving the coefficient a 209 = 1 a_{209}=-1 . Similarly, the coefficient of x 208 x^{208} is multiplying 2 -2 of x 2 2 x^2-2 with the rest of x k x^k , that is a 208 = 2 a_{208} = -2 . For the coefficient of x 203 x^{203} , we have:

a 203 = 7 + ( 1 ) ( 6 ) + ( 2 ) ( 5 ) + ( 3 ) ( 4 ) + ( 1 ) ( 2 ) ( 4 ) = 7 + 6 + 10 + 12 8 = 13 See note. a_{203} = -7 + (-1)(-6)+(-2)(-5)+(-3)(-4) + (-1)(-2)(-4) = -7 + 6 + 10 + 12 - 8 = \boxed{13} \quad \small \color{#3D99F6} \text{See note.}


Note:

P ( x ) = k = 1 20 ( x k ) = ( x 7 7 ) k = 1 , k 7 20 ( x k ) = ( x 7 7 ) ( x 203 203 x 202 + k = 1 , k 7 20 k ) = 7 x 203 + \begin{aligned} P(x) & = \prod_{k=1}^{20} (x-k) = (x^7 - 7) \prod_{k=1, k \ne 7}^{20} (x-k) = (x^7 - 7)\bigg(x^{203} - 203x^{202} + \cdots - \prod_{k=1,k \ne 7}^{20} k \bigg) = - 7 x^{203} + \cdots \end{aligned}

Similarly,

P ( x ) = ( x 1 ) ( x 6 6 ) ( x 203 + ) = ( x 1 ) ( 6 x 203 + ) = 6 x 203 + P ( x ) = ( x 2 2 ) ( x 5 5 ) ( x 203 + ) = 10 x 203 + P ( x ) = ( x 3 3 ) ( x 4 4 ) ( x 203 + ) = 12 x 203 + P ( x ) = ( x 1 ) ( x 2 ) ( x 4 4 ) ( x 203 + ) = 8 x 203 + P(x) = (x-1)(x^6 - 6)(x^{203} + \cdots) = (x-1)(-6x^{203} + \cdots) = 6 x^{203} + \cdots \\ P(x) = (x^2-2)(x^5-5)(x^{203} + \cdots) = 10x^{203} + \cdots \\ P(x) = (x^3-3)(x^4-4)(x^{203} + \cdots) = 12x^{203} + \cdots \\ P(x) = (x-1)(x^-2)(x^4-4)(x^{203} + \cdots) = -8x^{203} + \cdots

Therefore, a 203 = 7 + 6 + 10 + 12 8 = 13 a_{203} = -7+6+10+12-8 = \boxed{13} . Note that the sum of the product number is 7 , 1 6 , 2 5 , 3 4 , 1 2 4 -7, - 1-6, -2-5, -3-4, -1-2-4 .

This is how I solved it

Nathan Oshlag - 3 years, 1 month ago

Could you explain how the coefficient of x 208 x^{208} is (-2)? And could you please also explain the calculations to compute a 203 a_{203} ?

Agnishom Chattopadhyay - 3 years, 1 month ago

Log in to reply

I have added a line to explain a 208 a_{208} . For a 203 a_{203} see note.

Chew-Seong Cheong - 3 years, 1 month ago

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
# https://brilliant.org/weekly-problems/2018-04-30/intermediate/?p=5
import numpy as np

max_n = 20

p1 = np.poly1d([1,-1])
print list(p1)
p2 = np.poly1d([1,0,-2])
print list(p2)
result = np.poly1d(p1*p2)

for i in range(3,max_n+1):
    new = [0]*(i-1)+[-i]
    p2 = list(p2)[:1] + new
    print p2
    p2 = np.poly1d(list(p2)[:1] + new)

    result = np.poly1d(result*p2)
coeffs = {}   
for i in range(len(result)+1):
    coeffs[len(result)-i] = list(result)[i]

power = raw_input("What power are you seeking a coeeficient: ")    
print 'Coefficient of x**%s is: %d' %(power, list(result)[len(result)-int(power)])
print
print 'All coefficients: %s' % sorted(coeffs.iteritems(), key=lambda (k,v): k, reverse = True)
print 'Polynomial :\n %s' % np.poly1d(result)

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
[1, -1]
[1, 0, -2]
[1, 0, 0, -3]
[1, 0, 0, 0, -4]
[1, 0, 0, 0, 0, -5]
[1, 0, 0, 0, 0, 0, -6]
[1, 0, 0, 0, 0, 0, 0, -7]
[1, 0, 0, 0, 0, 0, 0, 0, -8]
[1, 0, 0, 0, 0, 0, 0, 0, 0, -9]
[1, 0, 0, 0, 0, 0, 0, 0, 0, 0, -10]
[1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -11]
[1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -12]
[1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -13]
[1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -14]
[1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -15]
[1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -16]
[1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -17]
[1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -18]
[1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -19]
[1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -20]


What power are you seeking a coeeficient: 203
Coefficient of x**203 is: 13

All coefficients: [(210, 1), (209, -1), (208, -2), (207, -1), (206, -1), (205, 5), (204, 1), (203, 13), (202, 4), (201, 0), (200, 2), (199, -8), (198, -61), (197, -31), (196, 13), (195, -156), (194, 21), (193, 11), (192, 223), (191, 92), (190, 91), (189, 447), (188, 973), (187, 124), (186, 77), (185, -1214), (184, 453), (183, 1329), (182, -4374), (181, -2346), (180, -5320), (179, -1925), (178, -6337), (177, 9585), (176, -11673), (175, -20800), (174, 14862), (173, 18075), (172, 9503), (171, 76938), (170, -56), (169, 44163), (168, 2895), (167, 110002), (166, 254655), (165, -11639), (164, -20868), (163, -167135), (162, -22030), (161, -662034), (160, -211416), (159, -624322), (158, 313114), (157, -1776915), (156, -2619758), (155, -598793), (154, -929123), (153, -1490912), (152, 1878873), (151, 1004627), (150, 6786536), (149, 2764514), (148, 6612495), (147, -4949051), (146, 20615554), (145, 41571614), (144, 2632759), (143, 28432753), (142, 24561647), (141, 3351331), (140, -24817104), (139, -1549616), (138, -104893996), (137, 15480297), (136, -90863289), (135, -31308464), (134, -251892997), (133, -435338490), (132, -299356957), (131, -222648395), (130, -363439741), (129, -159500758), (128, -131916689), (127, 349450445), (126, -67518313), (125, 1170002316), (124, 844132741), (123, 1451804275), (122, 481432555), (121, -630147730), (120, -1716320682), (119, 1815458306), (118, 546763294), (117, -988979123), (116, 312875411), (115, 1643841731), (114, -122716563), (113, 568420175), (112, 324909728), (111, 1368009253), (110, -570348127), (109, 1895117300), (108, -2017794260), (107, -767306472), (106, 1498058428), (105, 939784066), (104, -415431570), (103, -1854966124), (102, -1145900190), (101, 150463760), (100, 242043624), (99, -1199620064), (98, 427180098), (97, -1792925516), (96, 382108848), (95, -319033258), (94, 2121443724), (93, -170347342), (92, -877891522), (91, -893096432), (90, 705835072), (89, -1378616492), (88, 221459988), (87, -1489161460), (86, 162542892), (85, 1162565176), (84, -853837140), (83, -270826456), (82, 228519096), (81, 673888884), (80, -1650508672), (79, -752632236), (78, -1301890988), (77, -1875705336), (76, 1117312408), (75, 1643061000), (74, -2132641080), (73, -1822674456), (72, 1685826008), (71, -177643480), (70, -964201552), (69, -711996248), (68, 1176386488), (67, -177395872), (66, -1102280576), (65, -1908340656), (64, 1205235344), (63, -951436976), (62, 428493456), (61, -976734768), (60, -131828768), (59, 1017370000), (58, 1458750864), (57, -556199808), (56, -880608256), (55, 1657290560), (54, 957329632), (53, -228864960), (52, 1849388736), (51, 777800544), (50, -253352768), (49, -1546521312), (48, -181638176), (47, 698082496), (46, -1098930368), (45, -221866560), (44, -114785920), (43, 330997568), (42, -403313216), (41, 292416128), (40, 294700160), (39, -1537711232), (38, -1050984192), (37, -995273856), (36, 1410717568), (35, -169184256), (34, 650967552), (33, 1735304960), (32, 1141367296), (31, -900419328), (30, -612470528), (29, 1036154368), (28, -277779968), (27, 273291264), (26, 292814848), (25, -940455936), (24, -382648320), (23, -1522515968), (22, 1557145600), (21, -515794944), (20, -1208788992), (19, -490897408), (18, 985743360), (17, -1173180416), (16, 1283571712), (15, 1653026816), (14, -1045123072), (13, -658644992), (12, 1135730688), (11, -1151451136), (10, -609140736), (9, 952696832), (8, -749764608), (7, -1967357952), (6, -734101504), (5, 1906769920), (4, -1248919552), (3, 1797128192), (2, -1096417280), (1, 2102132736), (0, -2102132736)]
Polynomial :
    210     209     208     207     206     205     204      203     202
1 x   - 1 x   - 2 x   - 1 x   - 1 x   + 5 x   + 1 x   + 13 x   + 4 x  
      200     199      198      197      196       195      194
 + 2 x   - 8 x   - 61 x   - 31 x   + 13 x   - 156 x   + 21 x  
       193       192      191      190       189       188       187
 + 11 x   + 223 x   + 92 x   + 91 x   + 447 x   + 973 x   + 124 x  
       186        185       184        183        182        181
 + 77 x   - 1214 x   + 453 x   + 1329 x   - 4374 x   - 2346 x  
         180        179        178        177             176
 - 5320 x   - 1925 x   - 6337 x   + 9585 x   - 1.167e+04 x  
             175             174             173        172
 - 2.08e+04 x   + 1.486e+04 x   + 1.808e+04 x   + 9503 x  
              171      170             169        168           167
 + 7.694e+04 x   - 56 x   + 4.416e+04 x   + 2895 x   + 1.1e+05 x  
              166             165             164             163
 + 2.547e+05 x   - 1.164e+04 x   - 2.087e+04 x   - 1.671e+05 x  
              162            161             160             159
 - 2.203e+04 x   - 6.62e+05 x   - 2.114e+05 x   - 6.243e+05 x  
              158             157            156             155
 + 3.131e+05 x   - 1.777e+06 x   - 2.62e+06 x   - 5.988e+05 x  
              154             153             152             151
 - 9.291e+05 x   - 1.491e+06 x   + 1.879e+06 x   + 1.005e+06 x  
              150             149             148             147
 + 6.787e+06 x   + 2.765e+06 x   + 6.612e+06 x   - 4.949e+06 x  
              146             145             144             143
 + 2.062e+07 x   + 4.157e+07 x   + 2.633e+06 x   + 2.843e+07 x  
              142             141             140            139
 + 2.456e+07 x   + 3.351e+06 x   - 2.482e+07 x   - 1.55e+06 x  
              138             137             136             135
 - 1.049e+08 x   + 1.548e+07 x   - 9.086e+07 x   - 3.131e+07 x  
              134             133             132             131
 - 2.519e+08 x   - 4.353e+08 x   - 2.994e+08 x   - 2.226e+08 x  
              130             129             128             127
 - 3.634e+08 x   - 1.595e+08 x   - 1.319e+08 x   + 3.495e+08 x  
              126            125             124             123
 - 6.752e+07 x   + 1.17e+09 x   + 8.441e+08 x   + 1.452e+09 x  
              122             121             120             119
 + 4.814e+08 x   - 6.301e+08 x   - 1.716e+09 x   + 1.815e+09 x  
              118            117             116             115
 + 5.468e+08 x   - 9.89e+08 x   + 3.129e+08 x   + 1.644e+09 x  
              114             113             112             111
 - 1.227e+08 x   + 5.684e+08 x   + 3.249e+08 x   + 1.368e+09 x  
              110             109             108             107
 - 5.703e+08 x   + 1.895e+09 x   - 2.018e+09 x   - 7.673e+08 x  
              106             105             104             103
 + 1.498e+09 x   + 9.398e+08 x   - 4.154e+08 x   - 1.855e+09 x  
              102             101            100           99
 - 1.146e+09 x   + 1.505e+08 x   + 2.42e+08 x   - 1.2e+09 x 
              98             97             96            95
 + 4.272e+08 x  - 1.793e+09 x  + 3.821e+08 x  - 3.19e+08 x 
              94             93             92             91
 + 2.121e+09 x  - 1.703e+08 x  - 8.779e+08 x  - 8.931e+08 x 
              90             89             88             87
 + 7.058e+08 x  - 1.379e+09 x  + 2.215e+08 x  - 1.489e+09 x 
              86             85             84             83
 + 1.625e+08 x  + 1.163e+09 x  - 8.538e+08 x  - 2.708e+08 x 
              82             81             80             79
 + 2.285e+08 x  + 6.739e+08 x  - 1.651e+09 x  - 7.526e+08 x 
              78             77             76             75
 - 1.302e+09 x  - 1.876e+09 x  + 1.117e+09 x  + 1.643e+09 x 
              74             73             72             71
 - 2.133e+09 x  - 1.823e+09 x  + 1.686e+09 x  - 1.776e+08 x 
              70            69             68             67
 - 9.642e+08 x  - 7.12e+08 x  + 1.176e+09 x  - 1.774e+08 x 
              66             65             64             63
 - 1.102e+09 x  - 1.908e+09 x  + 1.205e+09 x  - 9.514e+08 x 
              62             61             60             59
 + 4.285e+08 x  - 9.767e+08 x  - 1.318e+08 x  + 1.017e+09 x 
              58             57             56             55
 + 1.459e+09 x  - 5.562e+08 x  - 8.806e+08 x  + 1.657e+09 x 
              54             53             52             51
 + 9.573e+08 x  - 2.289e+08 x  + 1.849e+09 x  + 7.778e+08 x 
              50             49             48             47
 - 2.534e+08 x  - 1.547e+09 x  - 1.816e+08 x  + 6.981e+08 x 
              46             45             44            43
 - 1.099e+09 x  - 2.219e+08 x  - 1.148e+08 x  + 3.31e+08 x 
              42             41             40             39
 - 4.033e+08 x  + 2.924e+08 x  + 2.947e+08 x  - 1.538e+09 x 
              38             37             36             35
 - 1.051e+09 x  - 9.953e+08 x  + 1.411e+09 x  - 1.692e+08 x 
             34             33             32             31
 + 6.51e+08 x  + 1.735e+09 x  + 1.141e+09 x  - 9.004e+08 x 
              30             29             28             27
 - 6.125e+08 x  + 1.036e+09 x  - 2.778e+08 x  + 2.733e+08 x 
              26             25             24             23
 + 2.928e+08 x  - 9.405e+08 x  - 3.826e+08 x  - 1.523e+09 x 
              22             21             20             19
 + 1.557e+09 x  - 5.158e+08 x  - 1.209e+09 x  - 4.909e+08 x 
              18             17             16             15
 + 9.857e+08 x  - 1.173e+09 x  + 1.284e+09 x  + 1.653e+09 x 
              14             13             12             11
 - 1.045e+09 x  - 6.586e+08 x  + 1.136e+09 x  - 1.151e+09 x 
              10             9             8             7
 - 6.091e+08 x  + 9.527e+08 x - 7.498e+08 x - 1.967e+09 x
              6             5             4             3             2
 - 7.341e+08 x + 1.907e+09 x - 1.249e+09 x + 1.797e+09 x - 1.096e+09 x + 2.102e+09 x - 2.102e+09

Michael Fitzgerald - 3 years, 1 month ago

Sir why did u start the product of (x-k) from 1 to 20 from (x^7-7)???Pls help!!!!

erica phillips - 3 years, 1 month ago

Log in to reply

A bit difficult to explain. You can start with finding the coefficient of x 4 x^4 for ( x 1 ) ( x 2 2 ) ( x 3 3 ) (x-1)(x^2-2)(x^3-3) and figure it out.

Chew-Seong Cheong - 3 years, 1 month ago

I don't understand. Isn't the highest power: 20! From (x^1-a1)..(x^20-a20)

Aisthu Lucky - 2 years, 11 months ago

Log in to reply

The highest power is from x x 2 x 3 x 20 = x 1 + 2 + 3 + + 20 = x 20 ( 20 + 1 ) 2 = x 210 x\cdot x^2 \cdot x^3 \cdots x^{20} = x^{1+2+3+\cdots+20} = x^{\frac {20(20+1)}2} = x^{210} .

Chew-Seong Cheong - 2 years, 11 months ago

@Chew-Seong Cheong , i did not understand the first half of your solution. How we are able to multiply -1 and -2 to get the coefficients. Thanks in advance. A relevant wiki is also fine.

P.S. I think there are two LaTeX \LaTeX typos in your note.

  • P ( x ) = k = 1 20 ( x k ) = ( x 7 7 ) \substack k = 1 k 7 20 ( x k ) = ( x 7 7 ) ( x 203 203 x 202 + \substack k = 1 k 7 20 k ) = 7 x 203 + P(x) = \prod_{k=1}^{20} (x-k) = (x^7 - 7) \prod_{\substack{k=1 \\ k \ne 7}}^{20} (x-k) = (x^7 - 7) \bigg(x^{203} - 203x^{202} + \cdots - \prod_{\substack{k=1 k \ne 7}}^{20} k \bigg) = - 7 x^{203} + \cdots

  • P ( x ) = ( x 1 ) ( x 2 2 ) ( x 4 4 ) P(x)=(x-1)(\red{x^2 - 2})(x^4 - 4) \ldots

Mahdi Raza - 9 months, 1 week ago

Log in to reply

Now, I don't remember how. This Brilliant website used to support \substrack. I think they don't subscribe the module now.

Chew-Seong Cheong - 9 months, 1 week ago

Log in to reply

Oh, probably... Any relevant wiki or topic you can suggest for this. Thanks!

Mahdi Raza - 9 months, 1 week ago

Log in to reply

@Mahdi Raza I don't think. I remember it was my own idea. Give me sometime. I will report here.

Chew-Seong Cheong - 9 months, 1 week ago

Log in to reply

@Chew-Seong Cheong Thanks a lot!!

Mahdi Raza - 9 months, 1 week ago

Got it! When we expand

( x 1 ) ( x 2 2 ) ( x 3 3 ) ( x 4 4 ) ( x 20 20 ) = x 210 x 209 + \blue{(x-1)}(x^2- 2)(x^3-3)(x^4-4) \cdots (x^{20}-20) = x^{210} - x^{209} + \cdots

We get the coefficient of x 210 x^{210} and x 209 x^{209} which are 1 1 and 1 -1 . Similarly,

( x 2 2 ) ( x 1 ) ( x 3 3 ) ( x 4 4 ) ( x 20 20 ) = x 210 2 x 208 + (x^\red 2- \red 2)\blue{(x-1)}(x^3-3)(x^4-4) \cdots (x^{20}-20) = x^{210} - 2 x^{208} + \cdots

We get the coefficients of x 210 x^{210} and x 208 x^{208} which are 1 1 and 2 -2 .

To get the coefficient of x 203 x^{203} , we have to find

( a 7 x 7 + a 6 x 6 + a 5 x 5 + + a 2 x 2 + a 1 x + a 0 ) ( x 203 + ) \left(a_7x^7+a_6x^6 + a_5x^5 + \cdots + a_2x^2 + a_1x + a_0 \right)\left(x^{203} + \cdots \right)

So that a 0 a_0 is the coefficient of x 203 x^{203} . And a 0 a_0 is the sum of the constant terms of ( x 1 1 ) ( x 6 6 ) (x\red 1-1)(x^\red 6-6) , ( x 2 2 ) ( x 5 5 ) (x^\red 2 - 2)(x^\red 5 - 5) , ( x 3 3 ) ( x 4 4 ) (x^\red 3 - 3)(x^\red 4 - 4) , and ( x 1 1 ) ( x 2 2 ) ( x 4 4 ) (x^\red 1-1)(x^\red 2 -2) (x^\red 4 - 4) . Note that 1 + 6 = 2 + 5 = 3 + 4 = 1 + 2 + 4 = 7 1+6=2+5=3+4 = 1+2+4 = 7 .

Chew-Seong Cheong - 9 months, 1 week ago

Log in to reply

Oh yes, it's the same thing. Ways of not getting a x 7 x^7 are ( 7 ) , ( 6 , 1 ) , ( 5 , 2 ) , ( 4 , 3 ) , ( 1 , 2 , 4 ) (7), (6,1), (5, 2), (4,3), (1,2,4) where we multiply by the constant term instead of the x x -variable term. Upvoted! Thanks!

Mahdi Raza - 9 months, 1 week ago
David Vreken
Apr 19, 2018

The coefficient of the x 203 x^{203} term can be found by finding the sum of the coefficients of x 203 x^{203} from all the possible ways 203 203 can be made by all different integers from 1 1 to 20 20 . Since the highest number that can be made with these integers is 20 ( 20 + 1 ) 2 = 210 \frac{20(20 + 1)}{2} = 210 , another approach is to use up all the different integers from 1 1 to 20 20 except for the different integer combinations that can add up to 210 203 = 7 210 - 203 = 7 , which are 7 7 , 1 1 and 6 6 , 2 2 and 5 5 , 3 3 and 4 4 , and 1 1 and 2 2 and 4 4 . The possibilities are then:

( x 7 7 ) [ ( x 1 ) ( x 6 6 ) ( x 8 8 ) ( x 20 20 ) ] = ( x 7 7 ) ( x 203 + ) = x 210 + 7 x 203 + (x^7 - 7) \cdot [(x - 1) \dots (x^6 - 6)(x^8 - 8) \dots (x^{20} - 20)] = (x^7 - 7)(x^{203} + \dots) = x^{210} + \dots - 7x^{203} + \dots

( x 1 ) ( x 6 6 ) [ ( x 2 2 ) ( x 5 5 ) ( x 7 7 ) ( x 20 20 ) ] = ( x 7 + + 6 ) ( x 203 + ) = x 210 + + 6 x 203 + (x - 1)(x^6 - 6) \cdot [(x^2 - 2) \dots (x^5 - 5)(x^7 - 7) \dots (x^{20} - 20)] = (x^7 + \dots + 6)(x^{203} + \dots) = x^{210} + \dots + 6x^{203} + \dots

( x 2 2 ) ( x 5 5 ) [ ( x 1 ) ( x 3 3 ) ( x 4 4 ) ( x 6 6 ) ( x 20 20 ) ] = ( x 7 + + 10 ) ( x 203 + ) = x 210 + + 10 x 203 + (x^2 - 2)(x^5 - 5) \cdot [(x - 1)(x^3 - 3) \dots (x^4 - 4)(x^6 - 6) \dots (x^{20} - 20)] = (x^7 + \dots + 10)(x^{203} + \dots) = x^{210} + \dots + 10x^{203} + \dots

( x 3 3 ) ( x 4 4 ) [ ( x 1 ) ( x 2 2 ) ( x 5 5 ) ( x 20 20 ) ] = ( x 7 + + 12 ) ( x 203 + ) = x 210 + + 12 x 203 + (x^3 - 3)(x^4 - 4) \cdot [(x - 1)(x^2 - 2) \dots (x^5 - 5) \dots (x^{20} - 20)] = (x^7 + \dots + 12)(x^{203} + \dots) = x^{210} + \dots + 12x^{203} + \dots

( x 1 ) ( x 2 2 ) ( x 4 4 ) [ ( x 3 3 ) ( x 5 5 ) ( x 20 20 ) ] = ( x 7 + 8 ) ( x 203 + ) = x 210 + 8 x 203 + (x - 1)(x^2 - 2)(x^4 - 4) \cdot [(x^3 - 3)(x^5 - 5) \dots (x^{20} - 20)] = (x^7 + \dots - 8)(x^{203} + \dots) = x^{210} + \dots - 8x^{203} + \dots

The sum of the possible x 203 x^{203} term coefficients is 7 + 6 + 10 + 12 8 = 13 -7 + 6 + 10 + 12 - 8 = \boxed{13} .

It is the easiest way to approach the answer

Supratim Santra - 3 years, 1 month ago

After this explanation it seems too obvious.

Brijesh Shah - 3 years, 1 month ago

That is just brilliant ... reverse thinking at its best

Gupta Gupta - 3 years ago

Well explained, I did the same! all combinations for not getting a x 7 x^7 in the coefficient are ( 7 ) , ( 6 , 1 ) , ( 5 , 2 ) , ( 4 , 3 ) , ( 1 , 2 , 4 ) (7), (6,1), (5, 2), (4,3), (1,2,4) . Then add these coefficients. Nice! BTW if you understood Chew's first half can you please explain. Thanks in advance!

Mahdi Raza - 9 months, 1 week ago

Log in to reply

Sorry for the late response! Looks like he explained it to you in his comments, though.

David Vreken - 9 months, 1 week ago

Log in to reply

Ah, no worries at all!! Both of you had the same brilliant explanation, just explained a bit differently. But I am glad to learn from both perspectives. Thanks, upvoted to both of you!

Mahdi Raza - 9 months, 1 week ago
Patrick Corn
Apr 18, 2018

Divide the whole thing by x 210 . x^{210}. The coefficient of x 203 x^{203} in the original product is the coefficient of x 7 x^{-7} in ( 1 1 x ) ( 1 2 x 2 ) ( 1 20 x 20 ) . \left( 1-\frac1{x} \right) \left( 1 - \frac2{x^2} \right) \cdots \left( 1-\frac{20}{x^{20}} \right). Let y = 1 x , y = \frac1{x}, so we want the coefficient of y 7 y^7 in ( 1 y ) ( 1 2 y 2 ) ( 1 20 y 20 ) . (1-y)(1-2y^2)\cdots(1-20y^{20}). Getting y 7 y^7 in the product involves a sum of distinct positive integer exponents equal to 7. 7. There are five ways to do this: 7 , 1 + 6 , 2 + 5 , 3 + 4 , 1 + 2 + 4. 7, 1+6, 2+5, 3+4, 1+2+4. These yield the coefficients 7 , ( 1 ) ( 6 ) , ( 2 ) ( 5 ) , ( 3 ) ( 4 ) , ( 1 ) ( 2 ) ( 4 ) -7, (-1)(-6), (-2)(-5), (-3)(-4), (-1)(-2)(-4) respectively. These add up to 13 . \fbox{13}.

Great solution!

Hans Gabriel Daduya - 3 years, 1 month ago

Brilliant!

Ravikiran Rao - 3 years, 1 month ago
D B
May 1, 2018

Expanding an expression like the one given is done by combining all possible ways to select the first or the second term in each factor.

The highest possible power is x 210 x^{210} which you get by multiplying all the x x terms. To get x 203 x^{203} you need to skip seven x x , which can be done by skipping x 7 x^7 , or by skipping x 6 x^6 and x x , or any other combination of 1 to 7 that sums to 7.

There are only 5 ways to combine the integers 1 to 7 and get 7:

  • 7 7
  • 6 + 1 6 + 1
  • 5 + 2 5 + 2
  • 4 + 3 4 + 3
  • 4 + 2 + 1 4 + 2 + 1

For each of these you get one term of k × x 203 k \times x^{203} . The value of k k depends on the alternative (non x x ) terms in the given expression. For skipping x 7 x^{7} we get 7 -7 , for skipping x 4 x^{4} and x 3 x^{3} , we get the combination of 4 -4 and 3 -3 . Calculating them one by one we get:

  • 7 -7
  • 6 × 1 = 6 -6 \times -1 = 6
  • 5 × 2 = 10 -5 \times -2 = 10
  • 4 × 3 = 12 -4 \times -3 = 12
  • 4 × 2 × 1 = 8 -4 \times -2 \times -1 = -8

Summing these we get the answer:

7 + 6 + 10 + 12 + 8 = 13 -7 + 6 + 10 + 12 + -8 = \boxed{13}

Giorgos K.
Apr 30, 2018

Using M a t h e m a t i c a Mathematica

Coefficient[Product[x^n-n,{n,20}],x^203]

returns 13 13

That's nice. Probably works with Wolfram|Alpha too.

Agnishom Chattopadhyay - 3 years, 1 month ago
John Rey Jimenez
May 3, 2018

The product of these binomials could be imagined as a game of switching " power up " or " constant up " where in power up you will add the location of the switch to the exponent of x x and in constant up , you will multiply the constant to the power of x x , for example:

First switch x 1 x-1 :

  • power up : add one to the exponent of x x

  • constant up : add multiply the constant 1 -1 to the power x x

Second switch x 1 x-1 :

  • power up : add two to the exponent of x x

  • constant up : add multiply the constant 2 -2 to the power x x

Suppose we are dealing with 20 series of switches where power up s will add to the exponent of x x (depending on the location of the switch as exampled) and constant up will be multiplied to the resulting power of x x .

Now, if power ups are maximized, it will result to 210 as the exponent of x x . However, we only need 203, thus 7 exponents shall be removed. Hence, instead of powering up, we need to constant up some of the selected switches totaling to 7 exponents. The plausible candidates are:

A. 7th switch > -> constant up: 7 -7

B. 6th and 1st switch > -> constant up: ( 6 ) ( 1 ) = 6 (-6)(-1) = 6

C. 1st, 2nd and 4th switch > -> constant up: ( 1 ) ( 2 ) ( 4 ) = 8 (-1)(-2)(-4) = -8

D. 2nd and 5th switch > -> constant up: ( 2 ) ( 5 ) = 10 (-2)(-5) = 10

E. 3rd and 4th switch > -> constant up: ( 3 ) ( 4 ) = 12 (-3)(-4) = 12

Since these are mutually exclusive events, hence, we shall add them, thus, 7 + 6 + ( 8 ) + 10 + 12 = 13 -7 + 6 + (-8) + 10 + 12 = \boxed{13}

In short, one of the terms in the expansion is 13 x 203 13x^{203} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...