Dogbone

Calculus Level 5

0 1 1 x 2 x 8 + 1 d x = π A B [ cos ( π C ) cos ( D π E ) sin ( π C ) sin ( F π E ) ] \large\int_0^1 \frac{\sqrt{1-x^2}}{x^8+1}\,dx \; = \; \tfrac{\pi^A}{\sqrt{B}}\left [ \sqrt{\cos\left(\tfrac{\pi}{C}\right)} \cos\left(\tfrac{D\pi}{E}\right) - \sqrt{\sin\left(\tfrac{\pi}{C}\right)} \sin\left(\tfrac{F\pi}{E}\right)\right ]

Given that the equation above holds true, where A , B , C , D , E A,B,C,D,E and F F are positive integers such that F π E < π C < D π E \tfrac{F\pi}{E} < \tfrac{\pi}{C} < \tfrac{D\pi}{E} are acute angles, and D , E , F D,E,F are pairwise coprime, find the value of A + B + C + D + E + F A+B+C+D+E+F .


The answer is 37.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Mark Hennings
Jun 2, 2016

The function z 1 \sqrt{z-1} is analytic on the cut plane C \ ( , 1 ] \mathbb{C} \backslash(-\infty,1] , while the function z + 1 \sqrt{z+1} is analytic on the cut plane C \ ( , 1 ] \mathbb{C} \backslash (-\infty,-1] . Putting these functions together, we can define z 2 1 \sqrt{z^2-1} on the domain C \ [ 1 , 1 ] \mathbb{C} \backslash [-1,1] .

For R > 1 R > 1 , let γ R \gamma_R be the positively oriented contour z = R |z| = R . For 0 < ϵ < 1 2 0 < \epsilon < \tfrac12 , let D ϵ D_\epsilon be the ``dogbone" contour consisting of:

  • the semicircular arc z = 1 + ϵ e i θ z = 1 + \epsilon e^{i\theta} for π θ π -\pi \le \theta \le \pi ,
  • the straight line segment from 1 ϵ 1-\epsilon to 1 + ϵ -1 +\epsilon , running just above the cut,
  • the semicircular arc z = 1 + ϵ e i θ z = -1 + \epsilon e^{i\theta} for 0 θ 2 π 0 \le \theta \le 2\pi ,
  • the straight line segment from 1 + ϵ -1+\epsilon to 1 ϵ 1 - \epsilon , running just below the cut.

For any n N n \in \mathbb{N} with n 2 n \ge 2 , let S n S_n be the roots of the equation z 2 n + 1 = 0 z^{2n} + 1 \,=\,0 . For sufficiently small ϵ > 0 \epsilon > 0 , we have γ R z 2 1 z 2 n + 1 d z D ϵ z 2 1 z 2 n + 1 d z = 2 π i w S n R e s z = w z 2 1 z 2 n + 1 \int_{\gamma_R} \frac{\sqrt{z^2-1}}{z^{2n}+1}\,dz - \int_{D_\epsilon} \frac{\sqrt{z^2-1}}{z^{2n}+1}\,dz \; = \; 2\pi i \sum_{w \in S_n} \, \mathrm{Res}_{z = w} \frac{\sqrt{z^2-1}}{z^{2n}+1} Since γ R z 2 1 z 2 n + 1 d z = O ( R 2 2 n ) R \int_{\gamma_R} \frac{\sqrt{z^2-1}}{z^{2n}+1}\,dz \; = \; O\big(R^{2-2n}\big) \qquad \qquad R \to \infty and since lim ϵ 0 D ϵ z 2 1 z 2 n + 1 d z = 2 i 1 1 1 x 2 x 2 n + 1 d x = 4 i 0 1 1 x 2 x 2 n + 1 d x \lim_{\epsilon \to 0} \int_{D_\epsilon} \frac{\sqrt{z^2-1}}{z^{2n}+1}\,dz \; = \; -2i\int_{-1}^1 \frac{\sqrt{1-x^2}}{x^{2n}+1}\,dx \; = \; -4i\int_0^1 \frac{\sqrt{1-x^2}}{x^{2n}+1}\,dx we deduce that 0 1 1 x 2 x 2 n + 1 d x = 1 2 π w S n R e s z = w z 2 1 z 2 n + 1 = π 4 n w S n w w 2 1 \int_0^1 \frac{\sqrt{1-x^2}}{x^{2n}+1}\,dx \; = \; \tfrac12\pi \sum_{w \in S_n} \, \mathrm{Res}_{z=w} \frac{\sqrt{z^2-1}}{z^{2n}+1}\; = \; -\tfrac{\pi}{4n} \sum_{w \in S_n} w\sqrt{w^2-1} If w = e i θ w = e^{i\theta} where θ < π |\theta| < \pi , then w + 1 = 2 cos 1 2 θ e 1 2 i θ w 1 = 2 i sin 1 2 θ e 1 2 i θ w + 1 = 2 cos 1 2 θ e 1 4 i θ w 1 = 2 sin 1 2 θ e 1 4 i ( θ + s g n ( θ ) π ) w 2 1 = 2 sin θ e 1 4 i ( 2 θ + s g n ( θ ) π ) w w 2 1 = 2 sin θ e 1 4 i ( 6 θ + s g n ( θ ) π ) \begin{array}{rcl} w + 1 & = & 2\cos\tfrac12\theta \,e^{\frac12i\theta} \\ w - 1 & = & 2i\sin\tfrac12\theta \,e^{\frac12i\theta} \\ \sqrt{w+1} & = & \sqrt{2\cos\tfrac12\theta}\,e^{\frac14i\theta} \\ \sqrt{w-1} & = & \sqrt{2|\sin\tfrac12\theta|}\,e^{\frac14i(\theta + \mathrm{sgn}(\theta)\pi)} \\ \sqrt{w^2-1} & = & \sqrt{2|\sin\theta|}\,e^{\frac14i(2\theta + \mathrm{sgn}(\theta)\pi)} \\ w\sqrt{w^2-1} & = & \sqrt{2|\sin\theta|}\,e^{\frac14i(6\theta + \mathrm{sgn}(\theta)\pi)} \end{array} Thus we deduce, by letting R R \to \infty and ϵ 0 \epsilon \to 0 that 0 1 1 x 2 x 2 n + 1 d x = π 2 n k = 0 n 1 2 sin ( ( 2 k + 1 ) π 2 n ) cos ( ( 6 k + n + 3 ) π 4 n ) \int_0^1 \frac{\sqrt{1-x^2}}{x^{2n}+1}\,dx \; = \; -\tfrac{\pi}{2n}\sum_{k=0}^{n-1} \sqrt{2\sin\left(\tfrac{(2k+1)\pi}{2n}\right)}\cos\left(\tfrac{(6k+n+3)\pi}{4n}\right) and so, putting n = 4 n=4 , 0 1 1 x 2 x 8 + 1 d x = π 8 ( 2 sin π 8 cos 7 π 16 + 2 sin 7 π 8 cos 25 π 16 + 2 sin 3 π 8 cos 13 π 16 + 2 sin 5 π 8 cos 19 π 16 ) = π 4 ( 2 sin π 8 cos 7 π 16 2 sin 3 π 8 cos 3 π 16 ) = π 8 ( cos π 8 cos 3 π 16 sin π 8 sin π 16 ) \begin{array}{rcl} \displaystyle \int_0^1 \frac{\sqrt{1-x^2}}{x^8+1}\,dx & = & -\frac{\pi}{8}\left( \begin{array}{l} \sqrt{2\sin\tfrac{\pi}{8}}\cos\frac{7\pi}{16} + \sqrt{2\sin\tfrac{7\pi}{8}}\cos\tfrac{25\pi}{16} \\ + \sqrt{2\sin\tfrac{3\pi}{8}}\cos\tfrac{13\pi}{16} + \sqrt{2\sin\tfrac{5\pi}{8}}\cos\tfrac{19\pi}{16} \end{array} \right) \\[5ex] & = & -\frac{\pi}{4}\left(\sqrt{2\sin\tfrac{\pi}{8}}\cos\tfrac{7\pi}{16} - \sqrt{2\sin\tfrac{3\pi}{8}} \cos\tfrac{3\pi}{16}\right) \\[2ex] & = & \frac{\pi}{\sqrt{8}}\left(\sqrt{\cos\tfrac{\pi}{8}} \cos\tfrac{3\pi}{16} - \sqrt{\sin\tfrac{\pi}{8}}\sin\tfrac{\pi}{16}\right) \end{array} making the answer 1 + 8 + 8 + 3 + 16 + 1 = 37 1+8+8+3+16+1 = \boxed{37} .

Is this contour Sir?

Log in to reply

I am not quite sure what you mean. This is an example of contour integration.

Mark Hennings - 5 years ago

Log in to reply

Because of your example with circular interpretation that's why I'm asking you . Thanks for defining me I love to study lots of contour integration like this.

Log in to reply

Log in to reply

@Eli Ross Thanks Sir!

Aman Rajput
Jun 3, 2016

I = 0 1 1 x 2 x 8 + 1 d x = R e { 0 1 x 2 x 8 + 1 d x } \displaystyle I=\int\limits_{0}^{1} \frac{\sqrt{1-x^2}}{x^8+1} dx = \mathrm{Re}\{\int\limits_{0}^{\infty} \frac{\sqrt{1-x^2}}{x^8+1} dx \}

Use contour integration technique,(using a semicircle contour in the upper region of plane)

f ( z ) = 1 z 2 z 8 + 1 f(z)=\frac{\sqrt{1-z^2}}{z^8+1}

Evaluation of poles :

z 8 + 1 = 0 , z = i 1 / 4 , i 3 / 4 , i 5 / 4 , i 7 / 4 z^8+1=0 , z = i^{1/4},i^{3/4},i^{5/4},i^{7/4}

Using residue theorem :

C f ( z ) d z = R R f ( x ) d x + Γ f ( z ) d z \displaystyle \int_Cf(z)dz=\int\limits_{-R}^{R} f(x)dx+\int_{\Gamma}f(z)dz

Γ f ( z ) d z 0 \int_{\Gamma}f(z)dz \to 0 as R R \to \infty

C f ( z ) d z = 2 π i x p o l e s R e s \displaystyle \int_Cf(z)dz = 2\pi i \sum_{x \in poles} Res

Calculation of residues :

R e s f ( i 7 / 4 ) = ( z i 7 / 4 ) 1 z 2 z 8 + 1 = 1 8 e 7 i π 8 1 + e 3 i π 4 \displaystyle Resf(i^{7/4})= \frac{(z-i^{7/4})\sqrt{1-z^2}}{z^8+1}=-\frac18 e^{\frac{7i\pi}{8}}\sqrt{1+e^{\frac{3i\pi}{4}}}

= 1 8 e 7 i π 8 1 + cos ( π / 4 ) + i sin ( π / 4 ) = 1 8 e 7 i π 8 2 cos ( π / 8 ) e i π / 16 = 1 4 2 cos ( 3 π / 8 ) e 17 π i / 16 \displaystyle = -\frac18 e^{\frac{7i\pi}{8}}\sqrt{1+\cos(\pi/4)+i\sin(\pi/4)}=-\frac18 e^{\frac{7i\pi}{8}}\sqrt{2\cos(\pi/8)}e^{i\pi/16}=-\frac{1}{4\sqrt2}\sqrt{\cos(3\pi/8)}e^{17\pi i/16}

Similarly ,

R e s f ( i 1 / 4 ) = 1 4 2 cos ( 3 π / 8 ) e 17 π i / 16 \displaystyle Resf(i^{1/4})=\frac{1}{4\sqrt2}\sqrt{\cos(3\pi/8)}e^{-17\pi i/16}

R e s f ( i 3 / 4 ) = 1 4 2 cos ( π / 8 ) e 11 π i / 16 \displaystyle Resf(i^{3/4})=\frac{1}{4\sqrt2}\sqrt{\cos(\pi/8)}e^{-11\pi i/16}

R e s f ( i 5 / 4 ) = 1 4 2 cos ( π / 8 ) e 11 π i / 16 \displaystyle Resf(i^{5/4})=-\frac{1}{4\sqrt2}\sqrt{\cos(\pi/8)}e^{11\pi i/16}

Sum of residues:(after converting the angles into acute angles)

x p o l e s R e s f = 1 2 2 i { cos ( π 8 ) cos ( 3 π 16 ) sin π 8 sin ( π 16 ) } \displaystyle \sum_{x \in poles} Resf = -\frac{1}{2\sqrt2}i\{\sqrt{\cos(\frac{\pi}{8})}\cos(\frac{3\pi}{16}) - \sqrt{\sin{\frac{\pi}{8}}}\sin(\frac{\pi}{16})\}

C f ( z ) d z = 2 π i × 1 2 2 i { cos ( π 8 ) cos ( 3 π 16 ) sin π 8 sin ( π 16 ) } \displaystyle \int_C f(z)dz=2\pi i \times -\frac{1}{2\sqrt2}i\{\sqrt{\cos(\frac{\pi}{8})}\cos(\frac{3\pi}{16}) - \sqrt{\sin{\frac{\pi}{8}}}\sin(\frac{\pi}{16})\}

= π 2 { cos ( π 8 ) cos ( 3 π 16 ) sin π 8 sin ( π 16 ) } \displaystyle = \frac{\pi}{\sqrt2}\{\sqrt{\cos(\frac{\pi}{8})}\cos(\frac{3\pi}{16}) - \sqrt{\sin{\frac{\pi}{8}}}\sin(\frac{\pi}{16})\}

This gives ,

1 x 2 x 8 + 1 d x = π 2 { cos ( π 8 ) cos ( 3 π 16 ) sin π 8 sin ( π 16 ) } \displaystyle \int\limits_{-\infty}^{\infty}\frac{\sqrt{1-x^2}}{x^8+1} dx=\frac{\pi}{\sqrt2}\{\sqrt{\cos(\frac{\pi}{8})}\cos(\frac{3\pi}{16}) - \sqrt{\sin{\frac{\pi}{8}}}\sin(\frac{\pi}{16})\}

0 1 x 2 x 8 + 1 d x = π 8 { cos ( π 8 ) cos ( 3 π 16 ) sin π 8 sin ( π 16 ) } \displaystyle \boxed{\int\limits_{0}^{\infty}\frac{\sqrt{1-x^2}}{x^8+1} dx=\frac{\pi}{\sqrt8}\{\sqrt{\cos(\frac{\pi}{8})}\cos(\frac{3\pi}{16}) - \sqrt{\sin{\frac{\pi}{8}}}\sin(\frac{\pi}{16})\}}

It seems you are defining z 2 1 \sqrt{z^2-1} on the domain C \ ( ( , 1 ] [ 1 , ) ) \mathbb{C} \backslash \big((-\infty,-1] \cup [1,\infty)\big) . This works (+1), but it would probably be as well to be specific about the nature of the definition of this function. Defining 1 z 2 \sqrt{1-z^2} on the domain C \ [ 1 , 1 ] \mathbb{C} \backslash [-1,1] is a little neater.

Mark Hennings - 5 years ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...