∫ 0 1 x 8 + 1 1 − x 2 d x = B π A [ cos ( C π ) cos ( E D π ) − sin ( C π ) sin ( E F π ) ]
Given that the equation above holds true, where A , B , C , D , E and F are positive integers such that E F π < C π < E D π are acute angles, and D , E , F are pairwise coprime, find the value of A + B + C + D + E + F .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Is this contour Sir?
Log in to reply
I am not quite sure what you mean. This is an example of contour integration.
Log in to reply
Because of your example with circular interpretation that's why I'm asking you . Thanks for defining me I love to study lots of contour integration like this.
Log in to reply
@A Former Brilliant Member – Here's a wiki on it, @Cedie Camomot contour integration
I = 0 ∫ 1 x 8 + 1 1 − x 2 d x = R e { 0 ∫ ∞ x 8 + 1 1 − x 2 d x }
Use contour integration technique,(using a semicircle contour in the upper region of plane)
f ( z ) = z 8 + 1 1 − z 2
Evaluation of poles :
z 8 + 1 = 0 , z = i 1 / 4 , i 3 / 4 , i 5 / 4 , i 7 / 4
Using residue theorem :
∫ C f ( z ) d z = − R ∫ R f ( x ) d x + ∫ Γ f ( z ) d z
∫ Γ f ( z ) d z → 0 as R → ∞
∫ C f ( z ) d z = 2 π i x ∈ p o l e s ∑ R e s
Calculation of residues :
R e s f ( i 7 / 4 ) = z 8 + 1 ( z − i 7 / 4 ) 1 − z 2 = − 8 1 e 8 7 i π 1 + e 4 3 i π
= − 8 1 e 8 7 i π 1 + cos ( π / 4 ) + i sin ( π / 4 ) = − 8 1 e 8 7 i π 2 cos ( π / 8 ) e i π / 1 6 = − 4 2 1 cos ( 3 π / 8 ) e 1 7 π i / 1 6
Similarly ,
R e s f ( i 1 / 4 ) = 4 2 1 cos ( 3 π / 8 ) e − 1 7 π i / 1 6
R e s f ( i 3 / 4 ) = 4 2 1 cos ( π / 8 ) e − 1 1 π i / 1 6
R e s f ( i 5 / 4 ) = − 4 2 1 cos ( π / 8 ) e 1 1 π i / 1 6
Sum of residues:(after converting the angles into acute angles)
x ∈ p o l e s ∑ R e s f = − 2 2 1 i { cos ( 8 π ) cos ( 1 6 3 π ) − sin 8 π sin ( 1 6 π ) }
∫ C f ( z ) d z = 2 π i × − 2 2 1 i { cos ( 8 π ) cos ( 1 6 3 π ) − sin 8 π sin ( 1 6 π ) }
= 2 π { cos ( 8 π ) cos ( 1 6 3 π ) − sin 8 π sin ( 1 6 π ) }
This gives ,
− ∞ ∫ ∞ x 8 + 1 1 − x 2 d x = 2 π { cos ( 8 π ) cos ( 1 6 3 π ) − sin 8 π sin ( 1 6 π ) }
0 ∫ ∞ x 8 + 1 1 − x 2 d x = 8 π { cos ( 8 π ) cos ( 1 6 3 π ) − sin 8 π sin ( 1 6 π ) }
It seems you are defining z 2 − 1 on the domain C \ ( ( − ∞ , − 1 ] ∪ [ 1 , ∞ ) ) . This works (+1), but it would probably be as well to be specific about the nature of the definition of this function. Defining 1 − z 2 on the domain C \ [ − 1 , 1 ] is a little neater.
Problem Loading...
Note Loading...
Set Loading...
The function z − 1 is analytic on the cut plane C \ ( − ∞ , 1 ] , while the function z + 1 is analytic on the cut plane C \ ( − ∞ , − 1 ] . Putting these functions together, we can define z 2 − 1 on the domain C \ [ − 1 , 1 ] .
For R > 1 , let γ R be the positively oriented contour ∣ z ∣ = R . For 0 < ϵ < 2 1 , let D ϵ be the ``dogbone" contour consisting of:
For any n ∈ N with n ≥ 2 , let S n be the roots of the equation z 2 n + 1 = 0 . For sufficiently small ϵ > 0 , we have ∫ γ R z 2 n + 1 z 2 − 1 d z − ∫ D ϵ z 2 n + 1 z 2 − 1 d z = 2 π i w ∈ S n ∑ R e s z = w z 2 n + 1 z 2 − 1 Since ∫ γ R z 2 n + 1 z 2 − 1 d z = O ( R 2 − 2 n ) R → ∞ and since ϵ → 0 lim ∫ D ϵ z 2 n + 1 z 2 − 1 d z = − 2 i ∫ − 1 1 x 2 n + 1 1 − x 2 d x = − 4 i ∫ 0 1 x 2 n + 1 1 − x 2 d x we deduce that ∫ 0 1 x 2 n + 1 1 − x 2 d x = 2 1 π w ∈ S n ∑ R e s z = w z 2 n + 1 z 2 − 1 = − 4 n π w ∈ S n ∑ w w 2 − 1 If w = e i θ where ∣ θ ∣ < π , then w + 1 w − 1 w + 1 w − 1 w 2 − 1 w w 2 − 1 = = = = = = 2 cos 2 1 θ e 2 1 i θ 2 i sin 2 1 θ e 2 1 i θ 2 cos 2 1 θ e 4 1 i θ 2 ∣ sin 2 1 θ ∣ e 4 1 i ( θ + s g n ( θ ) π ) 2 ∣ sin θ ∣ e 4 1 i ( 2 θ + s g n ( θ ) π ) 2 ∣ sin θ ∣ e 4 1 i ( 6 θ + s g n ( θ ) π ) Thus we deduce, by letting R → ∞ and ϵ → 0 that ∫ 0 1 x 2 n + 1 1 − x 2 d x = − 2 n π k = 0 ∑ n − 1 2 sin ( 2 n ( 2 k + 1 ) π ) cos ( 4 n ( 6 k + n + 3 ) π ) and so, putting n = 4 , ∫ 0 1 x 8 + 1 1 − x 2 d x = = = − 8 π ⎝ ⎛ 2 sin 8 π cos 1 6 7 π + 2 sin 8 7 π cos 1 6 2 5 π + 2 sin 8 3 π cos 1 6 1 3 π + 2 sin 8 5 π cos 1 6 1 9 π ⎠ ⎞ − 4 π ( 2 sin 8 π cos 1 6 7 π − 2 sin 8 3 π cos 1 6 3 π ) 8 π ( cos 8 π cos 1 6 3 π − sin 8 π sin 1 6 π ) making the answer 1 + 8 + 8 + 3 + 1 6 + 1 = 3 7 .