Don't beat around the bush...

Algebra Level 4

Find the integer part of the sum : 1 + 1 1 2 + 1 2 2 + 1 + 1 2 2 + 1 3 2 + . . . . . + 1 + 1 1999 2 + 1 2000 2 \sqrt {1 + \frac {1}{{1}^{2}} + \frac {1}{{2}^{2}} } + \sqrt {1 + \frac {1}{{2}^{2}} + \frac {1}{{3}^{2}} } + . . . . . + \sqrt {1 + \frac {1}{{1999}^{2}} + \frac {1}{{2000}^{2}} }

Note : This problem is not original.


The answer is 1999.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Leon Fone
Oct 24, 2014

Each of the sum can be expressed as 1 + 1 a 2 + 1 ( a + 1 ) 2 \sqrt{1+\frac{1}{a^2}+\frac{1}{(a+1)^2}} for a = 1,2,3,...,1999

Now let me simplify that expression, and hope it can be simplified in a good way, because this problem may involve telescoping series: 1 + 1 a 2 + 1 ( a + 1 ) 2 \sqrt{1+\frac{1}{a^2}+\frac{1}{(a+1)^2}}

= a 2 . ( a + 1 ) 2 + a 2 + ( a + 1 ) 2 a 2 . ( a + 1 ) 2 = \sqrt{ \frac{a^2 . (a+1)^2 + a^2 + (a+1)^2}{a^2 . (a+1)^2}}

= a 4 + 2 a 3 + 3 a 2 + 2 a + 1 ( a 2 + a ) 2 = \sqrt{\frac{a^4 + 2a^3 + 3a^2 + 2a + 1}{(a^2+a)^2}}

= ( a 4 + a 3 + a 2 ) + ( a 3 + a 2 + a ) + ( a 2 + a + 1 ) ( a 2 + a ) 2 = \sqrt{\frac{(a^4 + a^3 + a^2) + (a^3 + a^2 + a) + (a^2 + a + 1)}{(a^2+a)^2}}

= a 2 ( a 2 + a + 1 ) + a ( a 2 + a + 1 ) + ( a 2 + a + 1 ) ( a 2 + a ) 2 = \sqrt{\frac{a^2(a^2 + a + 1) + a(a^2 + a + 1) + (a^2 + a + 1)}{(a^2+a)^2}}

= ( a 2 + a + 1 ) 2 ( a 2 + a ) 2 = \sqrt{\frac{(a^2+a+1)^2}{(a^2+a)^2}}

= a 2 + a + 1 a 2 + a = \frac{a^2+a+1}{a^2+a}

= 1 + 1 a ( a + 1 ) = 1 + \frac{1}{a(a+1)}

Now the sum is become: = 1 + 1 1.2 + 1 + 1 2.3 + 1 + 1 3.4 + . . . + 1 + 1 1999.2000 = 1 + \frac{1}{1.2} + 1 + \frac{1}{2.3} + 1 + \frac{1}{3.4} + ... + 1 + \frac{1}{1999.2000}

= 1.1999 + 1 1.2 + 1 2.3 + 1 3.4 + . . . + 1 1999.2000 =1.1999 + \frac{1}{1.2} + \frac{1}{2.3} + \frac{1}{3.4} + ... + \frac{1}{1999.2000}

= 1999 + ( 1 1 2 ) + ( 1 2 1 3 ) + ( 1 3 1 4 ) + . . . + ( 1 1999 1 2000 ) =1999 + (1 - \frac{1}{2}) + (\frac{1}{2} - \frac{1}{3}) + (\frac{1}{3} - \frac{1}{4}) + ... + (\frac{1}{1999} - \frac{1}{2000})

Every terms in fraction cancel each out except 1 1 and 1 2000 \frac{1}{2000}

= 1999 + 1 1 2000 =1999 + 1 - \frac{1}{2000}

Clearly the integer part is 1999, while the fractional part is 1999 2000 \frac{1999}{2000}

man you are too good!!+1

Adarsh Kumar - 6 years, 7 months ago

Yes this is the way indeed!

Arif Ahmed - 6 years, 7 months ago

Log in to reply

@Arif Ahmed this is same as this problem

Shubhendra Singh - 6 years, 7 months ago

Log in to reply

Oh, I didn't know that.I actually picked up this one from Mathematical Olympiad Challenges by Andreescu.

Arif Ahmed - 6 years, 7 months ago

Log in to reply

@Arif Ahmed No Problem

Shubhendra Singh - 6 years, 7 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...