Don't try to make yourself tired 2

Algebra Level pending

1 2 3 4 5 + 2 3 4 5 6 + 3 4 5 6 7 + + ( n 4 ) ( n 3 ) ( n 2 ) ( n 1 ) n = ( n 3 ) ( n 2 ) ( n 1 ) n ( n + 1 ) \large \color{#D61F06}{1\cdot 2 \cdot 3 \cdot 4 \cdot 5} + \color{#CEBB00}{2 \cdot 3 \cdot 4 \cdot 5 \cdot 6} + \color{#20A900}{3 \cdot 4 \cdot 5 \cdot 6 \cdot 7} + \cdots + \color{#3D99F6}{(n-4)(n-3)(n-2)(n-1)n} \\ = \color{#69047E}{(n-3)(n-2)(n-1)n(n+1)}

Given the equation above, find n n .

If you want more questions, please, check out my other question in Part 1 and Part 3 !


The answer is 10.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Relevant wiki: Hockey Stick Identity

Simpler solution thanks to @Spandan Senapati .

S = 1 2 3 4 5 + 2 3 4 5 6 + 3 4 5 6 7 + + ( n 4 ) ( n 3 ) ( n 2 ) ( n 1 ) n = k = 1 n 4 k ( k + 1 ) ( k + 2 ) ( k + 3 ) ( k + 4 ) = k = 1 n 4 ( k + 5 ) ( k 1 ) 6 k ( k + 1 ) ( k + 2 ) ( k + 3 ) ( k + 4 ) = 1 6 k = 1 n 4 ( k ( k + 1 ) ( k + 2 ) ( k + 3 ) ( k + 4 ) ( k + 5 ) ( k 1 ) k ( k + 1 ) ( k + 2 ) ( k + 3 ) ( k + 4 ) ) = ( n 4 ) ( n 3 ) ( n 2 ) ( n 1 ) n ( n + 1 ) 6 Given that S = ( n 3 ) ( n 2 ) ( n 1 ) n ( n + 1 ) = ( n 4 ) S 6 \begin{aligned} S & = 1\cdot 2 \cdot 3 \cdot 4 \cdot 5 + 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 + 3 \cdot 4 \cdot 5 \cdot 6 \cdot 7 + \cdots + (n-4)(n-3)(n-2)(n-1)n \\ & = \sum_{k=1}^{n-4} k(k+1)(k+2)(k+3)(k+4) \\ & = \sum_{k=1}^{n-4} \frac {{\color{#3D99F6}(k+5)}-{\color{#D61F06}(k-1)}}6 \cdot k(k+1)(k+2)(k+3)(k+4) \\ & = \frac 16 \sum_{k=1}^{n-4} \big(k(k+1)(k+2)(k+3)(k+4){\color{#3D99F6}(k+5)} - {\color{#D61F06}(k-1)}k(k+1)(k+2)(k+3)(k+4)\big) \\ & = \frac {(n-4)(n-3)(n-2)(n-1)n(n+1)}6 \quad \quad \small \color{#3D99F6} \text{Given that }S = (n-3)(n-2)(n-1)n(n+1) \\ & = \frac {(n-4)\color{#3D99F6}S}6 \end{aligned}

n 4 = 6 n = 10 \begin{aligned} \implies n-4 & = 6 \\ n & = \boxed{10} \end{aligned}


Previous solution

Thanks to @Brian Charlesworth's solution in Don't try to make yourself tired .

S = 1 2 3 4 5 + 2 3 4 5 6 + 3 4 5 6 7 + + ( n 4 ) ( n 3 ) ( n 2 ) ( n 1 ) n = k = 5 n k ! ( k 5 ) ! = 5 ! k = 5 n k ! 5 ! ( k 5 ) ! = 5 ! k = 5 n ( k 5 ) By hockey stick identity = 5 ! ( n + 1 6 ) = 5 ! ( n + 1 ) ! 6 ! ( n 5 ) ! = ( n 4 ) ( n 3 ) ( n 2 ) ( n 1 ) n ( n + 1 ) 6 Given that S = ( n 3 ) ( n 2 ) ( n 1 ) n ( n + 1 ) = ( n 4 ) S 6 \begin{aligned} S & = 1\cdot 2 \cdot 3 \cdot 4 \cdot 5 + 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 + 3 \cdot 4 \cdot 5 \cdot 6 \cdot 7 + \cdots + (n-4)(n-3)(n-2)(n-1)n \\ & = \sum_{k=5}^n \frac {k!}{(k-5)!} \\ & = 5! \sum_{k=5}^n \frac {k!}{5!(k-5)!} \\ & = 5! \color{#3D99F6} \sum_{k=5}^n {k \choose 5} \quad \quad \small \color{#3D99F6} \text{By hockey stick identity} \\ & = 5! \color{#3D99F6} {n+1 \choose 6} \\ & = \frac {5! (n+1)!}{6!(n-5)!} \\ & = \frac {(n-4)\color{#3D99F6}(n-3)(n-2)(n-1)n(n+1)}6 \quad \quad \small \color{#3D99F6} \text{Given that }S = (n-3)(n-2)(n-1)n(n+1) \\ & = \frac {(n-4)\color{#3D99F6}S}6 \end{aligned}

n 4 = 6 n = 10 \begin{aligned} \implies n-4 & = 6 \\ n & = \boxed{10} \end{aligned}

Given T ( r ) = r ( r + 1 ) ( r + 2 ) ( r + 3 ) ( r + 4 ) T(r)=r(r+1)(r+2)(r+3)(r+4) .one can write it as 1 / 6 ( r ( r + 1 ) ( r + 2 ) ( r + 3 ) ( r + 4 ) ( r + 5 ) ) 1 / 6 ( ( r 1 ) r ( r + 1 ) ( r + 2 ) ( r + 3 ) ( r + 4 ) ) 1/6(r(r+1)(r+2)(r+3)(r+4)(r+5))-1/6((r-1)r(r+1)(r+2)(r+3)(r+4)) Now we follow the Telescopic summation in which subsequent cancellation takes place and the sum comes to be ( n 4 ) ( n 3 ) ( n 2 ) ( n 1 ) n ( n + 1 ) / 6 (n-4)(n-3)(n-2)(n-1)n(n+1)/6 .Equating with the sum the and comes to be n 4 = 6 n-4=6 or n = 10 n=10

Spandan Senapati - 4 years, 1 month ago

Log in to reply

I don't quite get it. Is it:

1 6 ( 1 r 1 1 r + 5 ) r ( r + 1 ) ( r + 2 ) ( r + 3 ) ( r + 4 ) \begin{aligned} \frac 16 \left(\frac 1{r-1} - \frac 1{r+5}\right) r(r+1)(r+2)(r+3)(r+4) \end{aligned}

Chew-Seong Cheong - 4 years, 1 month ago

Log in to reply

No sir its ( r + 5 ) 1 / 6 ( r 1 ) 1 / 6 (r+5)1/6-(r-1)1/6 .Let me modify it so that it becomes clear.

Spandan Senapati - 4 years, 1 month ago

Log in to reply

@Spandan Senapati Thanks, I got it after some thinking earlier. I will put up a solution for you.

Chew-Seong Cheong - 4 years, 1 month ago

Log in to reply

@Chew-Seong Cheong That's so nice of you.Thanks a lot...

Spandan Senapati - 4 years, 1 month ago

Log in to reply

@Spandan Senapati I have provided similar solution in the first problem .

Chew-Seong Cheong - 4 years, 1 month ago

I have added that so that it doesn't make confusion.The manipulation was just to write 1 = ( ( r + 5 ) ( r 1 ) ) / 6 1=((r+5)-(r-1))/6

Spandan Senapati - 4 years, 1 month ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...