Don't try to multiply!

Geometry Level 4

( 1 + cos π 9 ) ( 1 + cos 3 π 9 ) ( 1 + cos 5 π 9 ) ( 1 + cos 7 π 9 ) \left( 1+\cos { \frac { \pi }{ 9 } } \right) \left( 1+\cos { \frac { 3\pi }{ 9 } } \right) \left( 1+\cos { \frac { 5\pi }{ 9 } } \right) \left( 1+\cos { \frac { 7\pi }{ 9 } } \right)

The value of the expression above can be expressed as P Q \dfrac PQ , where P P and Q Q are coprime positive integers , find Q P Q-P .


The answer is 7.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Rishabh Jain
Jun 18, 2016

R = ( 1 + cos π 9 ) ( 1 + cos 3 π 9 ) 1 + ( 1 2 ) = 3 2 ( 1 + cos 5 π 9 ) ( 1 + cos 7 π 9 ) \mathscr R=\left( 1+\cos { \frac { \pi }{ 9 } } \right) \underbrace{\left( 1+\cos { \frac { 3\pi }{ 9 } } \right)}_{\large 1+\left(\frac 12\right)=\frac 32} \left( 1+\cos { \frac { 5\pi }{ 9 } } \right) \left( 1+\cos { \frac { 7\pi }{ 9 } } \right) Use 1 + cos 2 x = 2 cos 2 x \small{\color{#D61F06}{1+\cos 2x=2\cos^2 x}} .

R = 3 ( 2 cos ( π 18 ) cos ( 5 π 18 ) cos ( 7 π 18 ) ) 2 \mathscr R= 3\left( \color{#20A900}{2\cos \left(\dfrac{\pi}{18} \right)\cos \left(\dfrac{5\pi}{18}\right)}\cos \left(\dfrac{7\pi}{18}\right)\right)^2

Use 2 cos A cos B = cos ( A + B ) + cos ( A B ) \small{\color{#20A900}{2\cos A\cos B=\cos (A+B)+\cos (A-B)}}

R = 3 ( ( cos ( π 3 ) 1 2 + cos ( 2 π 9 ) ) cos ( 7 π 18 ) ) 2 \mathscr R=3\left(\left(\color{#20A900}{\underbrace{\cos \left(\dfrac{\pi}3\right)}_{\frac{1}2}+\cos \left(\dfrac{2\pi}9\right)}\right) \cos \left(\dfrac{7\pi}{18}\right)\right)^2

= 3 4 ( cos ( 7 π 18 ) + 2 cos ( 7 π 18 ) ( 2 π 9 ) ) 2 =\dfrac 34\left(\cos \left(\dfrac{7\pi}{18}\right)+ 2\cos \left(\dfrac{7\pi}{18}\right)\left(\dfrac{2\pi}9\right)\right)^2

= 3 4 ( cos ( 7 π 18 ) + cos ( 11 π 18 ) cos ( 7 π 18 ) + cos ( π 6 ) ) 2 =\dfrac 34\left(\cos \left(\dfrac{7\pi}{18}\right)+ \underbrace{\cos \left(\dfrac{11\pi}{18}\right)}_{-\cos \left(\dfrac{7\pi}{18}\right)}+\cos\left(\dfrac{\pi}6\right)\right)^2

= 9 16 \large =\dfrac9{16}

16 9 = 7 \Large \therefore 16-9=\huge\boxed{\color{#007fff}{7}}

The given cosines are the roots of the polynomial f ( x ) = 32 x 4 16 x 3 24 x 2 + 8 x + 2 32 f(x)=\dfrac{32x^{4}-16x^{3}-24x^{2}+8x+2}{32} . So what is asked is f ( 1 ) f(-1) which is equal to 9 16 \dfrac{9}{16} . This method justifies the name of the problem.

Shubhendra Singh - 4 years, 11 months ago

Did almost the same. But why is the problem called "don't multiply"? We're using multiplication at some stage, you know!

Atomsky Jahid - 4 years, 12 months ago

Log in to reply

Multiplication solves this essentially easier because one has only to transform 0.5625 into a proper fraction!

Andreas Wendler - 4 years, 12 months ago

Log in to reply

But how do you find the value of all the cosines without calculator?

Anupam Nayak - 4 years, 11 months ago

Log in to reply

@Anupam Nayak Look here: http://mathworld.wolfram.com/TrigonometryAnglesPi9.html

Then use addition theorem.

Andreas Wendler - 4 years, 11 months ago
Neelesh Vij
Jun 20, 2016

( 1 + cos π 9 ) ( 1 + cos 3 π 9 ) ( 1 + cos 5 π 9 ) ( 1 + cos 7 π 9 ) \displaystyle \left ( 1 + \cos{ \dfrac{\pi}{9} } \right )\left ( 1 + \cos{ \dfrac{3\pi}{9} } \right )\left ( 1 + \cos{ \dfrac{5\pi}{9} } \right )\left ( 1 + \cos{ \dfrac{7\pi}{9} } \right )

Using cos ( π x ) = cos x \displaystyle \cos{(\pi - x) } = -\cos{x} we get:

( 1 cos 8 π 9 ) ( 1 cos 6 π 9 ) ( 1 cos 4 π 9 ) ( 1 cos 2 π 9 ) \displaystyle \left ( 1 - \cos{ \dfrac{8\pi}{9} } \right )\left ( 1 - \cos{ \dfrac{6\pi}{9} } \right )\left ( 1 - \cos{ \dfrac{4\pi}{9} } \right )\left ( 1 - \cos{ \dfrac{2\pi}{9} } \right )

Using 1 cos 2 x = 2 sin 2 x \displaystyle 1 - \cos{2x} = 2\sin^2{x} we get:

2 4 × sin 2 4 π 9 × sin 2 3 π 9 × sin 2 2 π 9 × sin 2 π 9 \displaystyle 2^4 \times \sin^2{\dfrac{4\pi}{9}} \times \sin^2{\dfrac{3\pi}{9}} \times \sin^2{\dfrac{2\pi}{9}} \times \sin^2{\dfrac{\pi}{9}}

Now using sin ( π x ) = sin x \displaystyle \sin{(\pi -x)} = \sin{x} we get:

2 4 sin π 9 sin 2 π 9 sin 3 π 9 sin 4 π 9 sin 5 π 9 sin 6 π 9 sin 7 π 9 sin 8 π 9 \displaystyle 2^4 \sin{\dfrac{\pi}{9}} \sin{\dfrac{2\pi}{9}} \sin{\dfrac{3\pi}{9}} \sin{\dfrac{4\pi}{9}} \sin{\dfrac{5\pi}{9}} \sin{\dfrac{6\pi}{9}} \sin{\dfrac{7\pi}{9}} \sin{\dfrac{8\pi}{9}}

Now using the famous identity k = 1 n 1 sin k π n = n 2 n 1 \displaystyle \prod_{k=1}^{n-1} \sin{\dfrac{k\pi}{n}} = \dfrac{n}{2^{n-1}} we get:

= 2 4 × 9 2 8 = 9 16 \displaystyle = 2^4 \times \dfrac{9}{2^8} = \boxed{\dfrac{9}{16}}

I like your solution. Do you know of a proof of the last identity you use?

Joe Mansley - 2 years, 8 months ago
Prakhar Bindal
Jun 19, 2016

We can use half angle identity and then use the popular identity cosxcos(60-x)cos(60+x) = cos3x / 4

Yes , thats my one of the favourite trigonometric identities

Aakash Khandelwal - 4 years, 12 months ago
Joe Potillor
Dec 6, 2016

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...