Don't use a calculator!

Algebra Level 3

2 + 5 3 + 2 5 3 = ? \large \sqrt[3]{2+\sqrt{5}} + \sqrt[3]{2-\sqrt{5}} = \, ?

Give your answer to 3 decimal places


The answer is 1.0000.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Let A = 2 + 5 3 \color{#E81990}{A}= \sqrt[3]{2+\sqrt{5}} , B = 2 5 3 \color{#EC7300}{B}=\sqrt[3]{2-\sqrt{5}} .
And, S = A + B = 2 + 5 3 + 2 5 3 \Rightarrow\color{#D61F06}{S}=\color{#3D99F6}{A+B}=\sqrt[3]{2+\sqrt{5}}+\sqrt[3]{2-\sqrt{5}}
Now, Cubing both sides.
S 3 = ( A + B ) 3 \Rightarrow \color{#D61F06}{S^3}=\color{#3D99F6}{(A+B)^3}
= A 3 + B 3 + 3 A B ( A + B ) =\color{#3D99F6}{A^3+B^3}+\color{#20A900}{3AB}\color{#3D99F6}{(A+B)}
= A 3 + B 3 + 3 A B S =\color{#3D99F6}{A^3+B^3}+\color{#20A900}{3AB}\color{#D61F06}{S} ...... ( ) (\color{#20A900}{♧}) [ Since , ( A + B ) = S \color{#3D99F6}{(A+B)}=\color{#D61F06}{S} ]
Thus,
A 3 + B 3 = ( 2 + 5 3 ) 3 + ( 2 5 3 ) 3 \Rightarrow \color{#3D99F6}{A^3+B^3}=(\sqrt[3]{2+\sqrt{5}})^{3}+(\sqrt[3]{2-\sqrt{5}})^{3}
= 2 + 5 + 2 5 =2+\sqrt{5}+2-\sqrt{5}
= 4 =\color{#302B94}{4}


3 A B = 3 ( 2 + 5 3 ) ( 2 5 3 ) \Rightarrow \color{#20A900}{3AB}=3(\sqrt[3]{2+\sqrt{5}})(\sqrt[3]{2-\sqrt{5}})
= 3 ( 4 5 3 ) =3(\sqrt[3]{4-5})
= 3 ( 1 3 ) =3(\sqrt[3]{-1})
= 3 × ( 1 ) =3×(-1)
= 3 =\color{#BA33D6}{-3}
Now, putting ( A 3 + B 3 ) = 4 \color{#3D99F6}{(A^3+B^3)}=\color{#302B94}{4} and ( 3 A B ) = 3 \color{#20A900}{(3AB)}=\color{#BA33D6}{-3} in ( ) (\color{#20A900}{♧}) .
S 3 = 4 3 S \Rightarrow \color{#D61F06}{S^3}=\color{#302B94}{4}\color{#BA33D6}{-3}\color{#D61F06}{S}
S 3 + 3 S 4 = 0 \color{#D61F06}{S^3}\color{#BA33D6}{+3}\color{#D61F06}{S}\color{#302B94}{-4}=0
( S 1 ) ( S 2 + S + 4 ) = 0 (\color{#D61F06}{S}-1)(\color{#D61F06}{S^2}+\color{#D61F06}{S}\color{#302B94}{+4})=0
S 1 = 0 \color{#D61F06}{S}-1=0
S = 1 \color{#D61F06}{S}=\color{#624F41}{\boxed{1}}

2 + 5 3 + 2 5 3 = 1 . \Rightarrow \sqrt[3]{2+\sqrt{5}} + \sqrt[3]{2-\sqrt{5}}=\color{#624F41}{\boxed{1}}.


Note : There is a possibilty that ( S 2 + S + 4 = 0 ) (\color{#D61F06}{S^2}+\color{#D61F06}{S}\color{#302B94}{+4}=0) ,but this is not possible because its roots are non-real complex numbers.And the surds given is real.

★【Nice coloring】★

Ashish Menon - 5 years ago

nice solution .. +1

Sabhrant Sachan - 5 years ago

Bro cong!!!!and ru solution and my solution is same but you know(-1)^(1÷3) is complex so who u write this -1tell me.....and no answer then ur solution were wrong..

VIneEt PaHurKar - 5 years ago

Log in to reply

Ask yourself what value should be multiplied 3 times to get a real one.
1 × 1 × 1 3 = 1 \sqrt[3]{-1×-1×-1}=\boxed{-1} . However, there are three values where one is real and two are complex.
As you know ι = 1 = ( 1 ) 1 2 \iota=\sqrt{-1}=(-1)^{\frac{1}{2}} .

( 1 ) 1 3 = ( 1 ) 1 2 × 2 3 = ι 2 3 0.500 + 0.86 ι (-1)^{\frac{1}{3}}=(-1)^{\frac{1}{2}×\frac{2}{3}}=\iota^{\frac{2}{3}}\approx0.500+0.86\iota

Log in to reply

Agreed. Well explained! & nice sol.+1 !

Rishabh Tiwari - 5 years ago

I did it the same way as Abhay....but how can you say that (-1)^(1/3) is complex.? In cube roots none of the values can be complex.!

Rishabh Tiwari - 5 years ago
Sharky Kesa
May 21, 2016

I have an algebraic-number-theoretic solution to this question. Let x = 2 + 5 3 + 2 5 3 x=\sqrt[3]{2+\sqrt{5}} + \sqrt[3]{2-\sqrt{5}} . Thus, we have

x 2 + 5 3 2 5 3 = 0 x-\sqrt[3]{2+\sqrt{5}} - \sqrt[3]{2-\sqrt{5}} = 0

We have for numbers a a , b b and c c such that a + b + c = 0 a+b+c=0 , then a 3 + b 3 + c 3 = 3 a b c a^3+b^3+c^3=3abc . (This is not too hard to show and is left as an exercise for the reader.) Thus, we have

x 3 ( 2 + 5 ) ( 2 5 ) = 3 x ( 2 + 5 ) ( 2 5 ) 3 x 3 4 = 3 x 1 3 x 3 + 3 x 4 = 0 ( x 1 ) ( x 2 + x + 4 ) = 0 \begin{aligned} x^3-(2+\sqrt{5})-(2-\sqrt{5})&=3x\sqrt[3]{(2+\sqrt{5})(2-\sqrt{5})}\\ x^3-4 &= 3x\sqrt[3]{-1}\\ x^3+3x-4&=0\\ (x-1)(x^2+x+4)&=0 \end{aligned}

Note that x 2 + x + 4 x^2+x+4 has no real solutions, and we are assumed to take only the real cube root. Thus, the value must be 1. Therefore, 2 + 5 3 + 2 5 3 = 1 \sqrt[3]{2+\sqrt{5}} + \sqrt[3]{2-\sqrt{5}}=\boxed{1} .

Moderator note:

Interesting approach used here.

I'm not sure to what extent it is "number-theoretic". Seems mostly algebraic to me.

¶Superb¶ (+1)

Ashish Menon - 5 years ago

I have also used the same identity.

Aditya Sky - 5 years ago

Nicely done. +1 !

Rishabh Tiwari - 5 years ago

Same approach! A quite standard approach for finding values of this form.

展豪 張 - 5 years ago
Sam Bealing
May 22, 2016

2 + 5 3 = 1 + 5 2 \sqrt[3]{2+\sqrt{5}}=\dfrac{1+\sqrt{5}}{2}

2 5 3 = 1 5 2 \sqrt[3]{2-\sqrt{5}}=\dfrac{1-\sqrt{5}}{2}

2 + 5 3 + 2 5 3 = 1 5 2 + 1 + 5 2 = 1 \sqrt[3]{2+\sqrt{5}}+\sqrt[3]{2-\sqrt{5}}=\dfrac{1-\sqrt{5}}{2}+\dfrac{1+\sqrt{5}}{2}=\boxed{1}

@Sam Bealing 2 + 5 3 = ϕ \sqrt[3]{2+\sqrt{5}}=\phi ,the golden ratio ,that's cool!Can you show how?

Rohit Udaiwal - 5 years ago

Log in to reply

2 + 5 3 = 8 ( 2 + 5 ) 8 3 = 16 + 8 5 8 3 = 15 + 1 + 5 5 + 3 5 8 3 = ( 1 + 5 2 ) 3 3 = 1 + 5 2 = ϕ \Rightarrow \sqrt[3]{2+\sqrt{5}} =\sqrt[3]{\dfrac{8(2+\sqrt{5})}{8}}=\sqrt[3]{\dfrac{16+8\sqrt{5}}{8}}=\sqrt[3]{\dfrac{15+1+5\sqrt{5}+3\sqrt{5}}{8}}=\sqrt[3]{\left({\dfrac{1+\sqrt{5}}{2}}\right)^3}=\dfrac{1+\sqrt{5}}{2}=\phi

Log in to reply

Great job!That's correct :)

Rohit Udaiwal - 5 years ago

In the fourth step,

Shouldn't it be sq.root5 instead of sq.root3 ???

Rishabh Tiwari - 5 years ago

Log in to reply

@Rishabh Tiwari Oh...Sorry fixed.

Log in to reply

@A Former Brilliant Member PERFECT NOW!

Rishabh Tiwari - 5 years ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...