tan 2 1 6 π + tan 2 1 6 3 π + tan 2 1 6 5 π + tan 2 1 6 7 π = ?
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Relevant wiki: Chebyshev Polynomials - Definition and Properties
Let I denote the value of this expression, then by applying the property that tan x = − tan ( π − x ) , we can rewrite I as
tan 2 1 6 1 5 π + tan 2 1 6 1 3 π + tan 2 1 6 1 1 π + tan 2 1 6 9 π .
Adding the original expression and the expression above gives
2 I = tan 2 1 6 π + tan 2 1 6 3 π + tan 2 1 6 5 π + tan 2 1 6 7 π + tan 2 1 6 9 π + tan 2 1 6 1 1 π + tan 2 1 6 1 3 π + tan 2 1 6 1 5 π
Now, consider the equation cos ( 8 x ) = 0 . It has roots 1 6 π , 1 6 3 π , 1 6 5 π , 1 6 7 π , 1 6 9 π , 1 6 1 1 π , 1 6 1 3 π , 1 6 1 5 π .
By applying the double angle formula cos ( 2 A ) = 2 cos 2 A − 1 repeatedly, we can rewrite cos ( 8 x ) as a polynomial of cos x ,
cos ( 8 x ) = 2 ( 2 ( 2 cos 2 x − 1 ) 2 − 1 ) 2 − 1 = 1 2 8 cos 8 x − 2 5 6 cos 6 x + 1 6 0 cos 4 x − 3 2 cos 2 x + 1 .
Let y = cos x , then 1 2 8 y 8 − 2 5 6 y 6 + 1 6 0 y 4 − 3 2 y 2 + 1 = 0 has roots cos 1 6 π , cos 1 6 3 π , cos 1 6 5 π , cos 1 6 7 π , cos 1 6 9 π , cos 1 6 1 1 π , cos 1 6 1 3 π , cos 1 6 1 5 π .
Likewise, let z = y 1 , then 1 2 8 ( z 1 ) 8 − 2 5 6 ( z 1 ) 6 + 1 6 0 ( z 1 ) 4 − 3 2 ( z 1 ) 2 + 1 = 0 ⇔ z 8 − 3 2 z 6 + 1 6 0 z 4 − 2 5 6 z 2 + 1 2 8 = 0 has roots
sec 1 6 π , sec 1 6 3 π , sec 1 6 5 π , sec 1 6 7 π , sec 1 6 9 π , sec 1 6 1 1 π , sec 1 6 1 3 π , sec 1 6 1 5 π .
By Vieta's formula,
0 2 − 2 ( − 3 2 ) 6 4 6 4 − 8 I = = = = sec 2 1 6 π + sec 2 1 6 3 π + sec 2 1 6 5 π + sec 2 1 6 7 π + sec 2 1 6 9 π + sec 2 1 6 1 1 π + sec 2 1 6 1 3 π + sec 2 1 6 1 5 π tan 2 1 6 π + tan 2 1 6 3 π + tan 2 1 6 5 π + tan 2 1 6 7 π + tan 2 1 6 9 π + tan 2 1 6 1 1 π + tan 2 1 6 1 3 π + tan 2 1 6 1 5 π + 8 2 I 2 8 .
Isn't this a bit of a sledgehammer, when the denominator is only 1 6 ? Higher powers of 2 in the denominator would benefit from this approach, though.
Log in to reply
My favorite technique = Chebyshevvvvv, hence my solution =D I only realized that (what you said) after posting my solution but I was too lazy to change it. But yes, you're absolutely rightttt. Admins, please make Mark's solution the highest solution
I actually wanted to post a roots of unity solution as well, but I thought that is worse than Chebyshev.
By the way, I haven't forgotten about your comments yet ( here , here and here ), still thinking about them.
A very different approach for the problem that I wasn't expecting due to the fact that I still haven't learned about the Chebyshev Polynomials and the use of its concepts in application in problems like these. However, I clearly understood your detailed solution and in the process learned about a whole new concept. Thanks!
i will share a slightly shorter approach
let pi/16 =x
lets club first and last term
tan^2(x)+cot^2(x) =[ sin^4(x)+cos^4(x) ]/[sinxcosx]^2
Using sin^4(x)+cos^4(x) = 1-2(sinxcosx)^2
similarly doing for second and third term
And solving further we get
4(cosec^2(2x)+cosec^2(6x)-1)
Now use cosec^2(y)= 1+cot^2(y)
cot^2(2x) = 3+2*root2
cot^2(6x) = 3-2*root 2
Nice solution!
P.S. I would suggest that you learn L a T e X . That way your solutions will look more neat, presentable and easier to follow and understand. :)
tan 2 1 6 π + tan 2 1 6 3 π + tan 2 1 6 5 π + tan 2 1 6 7 π = tan 2 1 6 π + cot 2 1 6 π + tan 2 1 6 3 π + cot 2 1 6 3 π = cos 2 1 6 π sin 2 1 6 π + sin 2 1 6 π cos 2 1 6 π + cos 2 1 6 3 π sin 2 1 6 3 π + sin 2 1 6 3 π cos 2 1 6 3 π = sin 2 1 6 π × cos 2 1 6 π sin 4 1 6 π + cos 4 1 6 π + sin 2 1 6 3 π × cos 2 1 6 3 π sin 4 1 6 3 π + cos 4 1 6 3 π = sin 2 1 6 π × cos 2 1 6 π 1 − ( 2 sin 2 1 6 π × cos 2 1 6 π ) + sin 2 1 6 3 π × cos 2 1 6 3 π 1 − ( 2 sin 2 1 6 3 π × cos 2 1 6 3 π ) = sin 2 1 6 2 π 4 + sin 2 1 6 6 π 4 − 4 = 4 × ( s i n 2 8 3 π × s i n 2 8 π s i n 2 8 3 π + s i n 2 8 π ) − 4 = 1 6 × ( 2 s i n 8 3 π × s i n 8 π ) 2 [ 1 − ( c o s 2 8 3 π − s i n 2 8 π ) ] − 4 = 1 6 × ( c o s 4 π − c o s 2 π ) 2 [ 1 − ( c o s 2 π × c o s 4 π ) ] − 4 = ( 2 1 ) 2 1 6 − 4 = 3 2 − 4 = 2 8 .
P.S : I have used the identities:
( a ) cos 2 x − sin 2 y = cos ( x + y ) × cos ( x − y )
( b ) 2 sin x sin y = cos ( x − y ) − cos ( x + y )
( c ) sin 4 x + cos 4 x = 1 − 2 sin 2 x cos 2 x
( d ) 2 sin x cos x = sin 2 x
( e ) cot ( 2 π − x ) = tan x .
Good use of elementary trigonometric identities.
P.S. You have made a typing mistake in your solution.
Instead of:
cos 2 1 6 π sin 2 1 6 π + sin 2 1 6 π cos 2 1 6 π + cos 2 1 6 3 π sin 2 1 6 3 π + sin 2 1 6 3 π cos 2 1 6 3 π = sin 2 1 6 π × cos 2 1 6 π sin 4 1 6 π + cos 4 1 6 π + sin 2 1 6 3 π × cos 2 1 6 3 π sin 4 1 6 3 π + cos 4 1 6 3 π
You typed in this by mistake:
cos 2 1 6 π sin 2 1 6 π + sin 2 1 6 π cos 2 1 6 π + cos 2 1 6 3 π sin 2 1 6 3 π + sin 2 1 6 3 π cos 2 1 6 3 π = sin 4 1 6 π × cos 4 1 6 π sin 4 6 π + cos 4 1 6 π + sin 4 1 6 3 π × cos 4 1 6 3 π sin 4 6 3 π + cos 4 1 6 3 π
See the mistake?
Log in to reply
Thanks ! I have edited it .
Log in to reply
Sorry. But there's one more mistake there.
Check it again. It is 6 π and 6 3 π instead of 1 6 π and 1 6 3 π in the sin 4 ( ⋅ ) function in both the numerators.
Log in to reply
@Tapas Mazumdar – Error. Mistake not found . Lol (Edited) Thanks again .
cos 2 A = 2 cos 2 A − 1 = 1 − 2 sin 2 A = cos 2 A − sin 2 A . ∴ cos 8 π = 2 cos 4 π + 1 = 2 2 2 + 1 = 2 1 ∗ 2 + 2 . . . . . . . . . . ( 1 ) A l s o sin 8 π = 2 1 − sin 4 π = 2 1 − 2 2 = 2 1 ∗ 2 − 2 . . . . . . . . . . ( 2 ) ⟹ tan 2 8 π 1 = ( ( 1 ) ( 2 ) ) 2 = 2 − 2 ‘ 2 + 2 = 2 6 + 2 ∗ 2 ∗ 2 = 3 + 2 2 . . . . . . . . . . . . . . . ∗ ∗ S i m i l a r l y tan 2 8 π = 3 − 2 2 . . . . . . . . . . @ @ tan ( 1 6 7 π ) = − tan ( 2 π − 1 6 7 π ) 1 = tan ( − 1 6 π ) 1 . tan 1 6 5 π = tan ( 2 π − 1 6 5 π ) 1 = tan ( 1 6 3 π ) 1 . A n d t a n 2 8 3 π = tan 2 ( − ( π − 8 3 π ) ) = tan 2 8 π . A l s o tan 2 x + tan 2 x 1 = cos 2 x sin 2 x + sin 2 x cos 2 x = sin 2 x cos 2 x sin 4 x + cos 4 x = sin 2 x cos 2 x ( cos 2 x − sin 2 x ) 2 + 2 sin 2 x ∗ cos 2 x = sin 2 2 x 4 ( cos 2 2 x ) 2 + 2 = tan 2 2 x 4 + 2 . S i n c e 2 x = 8 π , a n d ∗ ∗ , @ @ ; tan 2 1 6 π + tan 2 1 6 3 π + tan 2 1 6 5 π + tan 2 1 6 7 π = tan 2 1 6 π + tan 2 ( − 1 6 π ) 1 + tan 2 ( 1 6 3 π ) 1 + tan 2 1 6 3 π = tan 2 8 π 4 + 2 + tan 2 8 3 π 4 + 2 = 4 ( 3 + 2 2 ) + 2 + 4 ( 3 − 2 2 ) + 2 = 2 8 .
Interesting to note for angle
2
n
π
A
p
p
l
y
i
n
g
H
a
l
f
A
n
g
l
e
F
o
r
m
u
l
a
,
C
o
s
4
π
=
2
2
.
C
o
s
8
π
=
2
2
+
2
.
C
o
s
1
6
π
=
2
2
+
2
+
2
.
C
o
s
3
2
π
=
2
2
+
2
+
2
+
2
.
S
i
n
4
π
=
2
2
.
S
i
n
8
π
=
2
2
−
2
.
S
i
n
1
6
π
=
2
2
−
2
+
2
.
S
i
n
3
2
π
=
2
2
−
2
+
2
+
2
.
And so on.
Problem Loading...
Note Loading...
Set Loading...
Since tan 2 x + tan 2 ( 2 1 π − x ) = tan 2 x + cot 2 x = sin 2 x cos 2 x sin 4 x + cos 4 x = sin 2 x cos 2 x ( sin 2 x + cos 2 x ) 2 − 2 sin 2 x cos 2 x = 4 c o s e c 2 2 x − 2 and c o s e c 2 x + c o s e c 2 ( 2 1 π − x ) = c o s e c 2 x + sec 2 x = sin 2 x cos 2 x cos 2 x + sin 2 x = 4 c o s e c 2 2 x the sum is equal to 4 c o s e c 2 8 1 π − 2 + 4 c o s e c 2 8 3 π − 2 = 1 6 c o s e c 2 4 1 π − 4 = 1 6 × 2 − 4 = 2 8