Trigonometric Tables Are Insufficient!

Geometry Level 4

tan 2 π 16 + tan 2 3 π 16 + tan 2 5 π 16 + tan 2 7 π 16 = ? \large \tan^{2} \frac{\pi}{16} + \tan^{2} \frac{3\pi}{16} + \tan^{2} \frac{5\pi}{16} + \tan^{2} \frac{7\pi}{16} = \, ?


The answer is 28.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

5 solutions

Mark Hennings
Sep 9, 2016

Since tan 2 x + tan 2 ( 1 2 π x ) = tan 2 x + cot 2 x = sin 4 x + cos 4 x sin 2 x cos 2 x = ( sin 2 x + cos 2 x ) 2 2 sin 2 x cos 2 x sin 2 x cos 2 x = 4 c o s e c 2 2 x 2 \tan^2x + \tan^2(\tfrac12\pi - x) \; = \; \tan^2x + \cot^2x \; = \; \frac{\sin^4x + \cos^4x}{\sin^2x\cos^2x} \; = \; \frac{(\sin^2x + \cos^2x)^2 - 2\sin^2x\cos^2x}{\sin^2x\cos^2x} \; = \; 4\mathrm{cosec}^22x - 2 and c o s e c 2 x + c o s e c 2 ( 1 2 π x ) = c o s e c 2 x + sec 2 x = cos 2 x + sin 2 x sin 2 x cos 2 x = 4 c o s e c 2 2 x \mathrm{cosec}^2x + \mathrm{cosec}^2(\tfrac12\pi-x) \; = \; \mathrm{cosec}^2x + \sec^2x \; = \; \frac{\cos^2x + \sin^2x}{\sin^2x\cos^2x} \; = \; 4\mathrm{cosec}^22x the sum is equal to 4 c o s e c 2 1 8 π 2 + 4 c o s e c 2 3 8 π 2 = 16 c o s e c 2 1 4 π 4 = 16 × 2 4 = 28 4\mathrm{cosec}^2\tfrac18\pi - 2 + 4\mathrm{cosec}^2\tfrac38\pi - 2 \; = \; 16\mathrm{cosec}^2\tfrac14\pi - 4 \; = \; 16\times2 - 4 \; = \; \boxed{28}

Pi Han Goh
Sep 7, 2016

Relevant wiki: Chebyshev Polynomials - Definition and Properties

Let I I denote the value of this expression, then by applying the property that tan x = tan ( π x ) \tan x = -\tan(\pi - x) , we can rewrite I I as

tan 2 15 π 16 + tan 2 13 π 16 + tan 2 11 π 16 + tan 2 9 π 16 . \tan^{2} \frac{15\pi}{16} + \tan^{2} \frac{13\pi}{16} + \tan^{2} \frac{11\pi}{16} + \tan^{2} \frac{9\pi}{16}.

Adding the original expression and the expression above gives

2 I = tan 2 π 16 + tan 2 3 π 16 + tan 2 5 π 16 + tan 2 7 π 16 + tan 2 9 π 16 + tan 2 11 π 16 + tan 2 13 π 16 + tan 2 15 π 16 2I = \tan^{2} \frac{\pi}{16} + \tan^{2} \frac{3\pi}{16} + \tan^{2} \frac{5\pi}{16} + \tan^{2} \frac{7\pi}{16} + \tan^{2} \frac{9\pi}{16} + \tan^{2} \frac{11\pi}{16} + \tan^{2} \frac{13\pi}{16} + \tan^{2} \frac{15\pi}{16}

Now, consider the equation cos ( 8 x ) = 0 \cos(8x) = 0 . It has roots π 16 , 3 π 16 , 5 π 16 , 7 π 16 , 9 π 16 , 11 π 16 , 13 π 16 , 15 π 16 \dfrac{\pi}{16} , \dfrac{3\pi}{16}, \dfrac{5\pi}{16}, \dfrac{7\pi}{16}, \dfrac{9\pi}{16}, \dfrac{11\pi}{16}, \dfrac{13\pi}{16}, \dfrac{15\pi}{16} .

By applying the double angle formula cos ( 2 A ) = 2 cos 2 A 1 \cos(2A) = 2\cos^2 A- 1 repeatedly, we can rewrite cos ( 8 x ) \cos(8x) as a polynomial of cos x \cos x ,

cos ( 8 x ) = 2 ( 2 ( 2 cos 2 x 1 ) 2 1 ) 2 1 = 128 cos 8 x 256 cos 6 x + 160 cos 4 x 32 cos 2 x + 1. \cos(8x) =2 ( 2 (2\cos^2 x - 1)^2 - 1)^2 - 1 = 128\cos^8 x - 256\cos^6 x + 160\cos^4 x - 32\cos^2 x + 1.

Let y = cos x y = \cos x , then 128 y 8 256 y 6 + 160 y 4 32 y 2 + 1 = 0 128y^8 - 256y^6 + 160y^4 - 32y^2 + 1 = 0 has roots cos π 16 , cos 3 π 16 , cos 5 π 16 , cos 7 π 16 , cos 9 π 16 , cos 11 π 16 , cos 13 π 16 , cos 15 π 16 \cos \dfrac{\pi}{16} , \cos \dfrac{3\pi}{16}, \cos \dfrac{5\pi}{16}, \cos\dfrac{7\pi}{16}, \cos\dfrac{9\pi}{16}, \cos \dfrac{11\pi}{16}, \cos \dfrac{13\pi}{16}, \cos \dfrac{15\pi}{16} .

Likewise, let z = 1 y z = \dfrac1y , then 128 ( 1 z ) 8 256 ( 1 z ) 6 + 160 ( 1 z ) 4 32 ( 1 z ) 2 + 1 = 0 z 8 32 z 6 + 160 z 4 256 z 2 + 128 = 0 128 \left(\dfrac1z\right)^8 - 256\left(\dfrac1z\right)^6 + 160\left(\dfrac1z\right)^4 - 32\left(\dfrac1z\right)^2 + 1 = 0 \quad \Leftrightarrow z^8 - 32z^6 + 160z^4 - 256z^2 + 128 = 0 has roots

sec π 16 , sec 3 π 16 , sec 5 π 16 , sec 7 π 16 , sec 9 π 16 , sec 11 π 16 , sec 13 π 16 , sec 15 π 16 \sec \dfrac{\pi}{16} , \sec \dfrac{3\pi}{16}, \sec \dfrac{5\pi}{16}, \sec\dfrac{7\pi}{16}, \sec\dfrac{9\pi}{16}, \sec \dfrac{11\pi}{16}, \sec \dfrac{13\pi}{16}, \sec \dfrac{15\pi}{16} .

By Vieta's formula,

0 2 2 ( 32 ) = sec 2 π 16 + sec 2 3 π 16 + sec 2 5 π 16 + sec 2 7 π 16 + sec 2 9 π 16 + sec 2 11 π 16 + sec 2 13 π 16 + sec 2 15 π 16 64 = tan 2 π 16 + tan 2 3 π 16 + tan 2 5 π 16 + tan 2 7 π 16 + tan 2 9 π 16 + tan 2 11 π 16 + tan 2 13 π 16 + tan 2 15 π 16 + 8 64 8 = 2 I I = 28 . \begin{aligned} 0^2 - 2(-32) &=& \sec^2 \dfrac{\pi}{16} + \sec^2 \dfrac{3\pi}{16}+ \sec^2 \dfrac{5\pi}{16} + \sec^2\dfrac{7\pi}{16}+ \sec^2\dfrac{9\pi}{16}+ \sec^2 \dfrac{11\pi}{16} + \sec^2 \dfrac{13\pi}{16} + \sec^2 \dfrac{15\pi}{16} \\ 64 &=& \tan^2 \dfrac{\pi}{16} + \tan^2 \dfrac{3\pi}{16}+ \tan^2 \dfrac{5\pi}{16} + \tan^2 \dfrac{7\pi}{16}+ \tan^2 \dfrac{9\pi}{16}+ \tan^2 \dfrac{11\pi}{16} + \tan^2 \dfrac{13\pi}{16} + \tan^2 \dfrac{15\pi}{16} + 8 \\ 64 - 8 & =& 2I \\ I &=& \boxed{28} \; . \end{aligned}

Isn't this a bit of a sledgehammer, when the denominator is only 16 16 ? Higher powers of 2 2 in the denominator would benefit from this approach, though.

Mark Hennings - 4 years, 9 months ago

Log in to reply

My favorite technique = Chebyshevvvvv, hence my solution =D I only realized that (what you said) after posting my solution but I was too lazy to change it. But yes, you're absolutely rightttt. Admins, please make Mark's solution the highest solution

I actually wanted to post a roots of unity solution as well, but I thought that is worse than Chebyshev.

By the way, I haven't forgotten about your comments yet ( here , here and here ), still thinking about them.

Pi Han Goh - 4 years, 9 months ago

A very different approach for the problem that I wasn't expecting due to the fact that I still haven't learned about the Chebyshev Polynomials and the use of its concepts in application in problems like these. However, I clearly understood your detailed solution and in the process learned about a whole new concept. Thanks!

Tapas Mazumdar - 4 years, 9 months ago
Prakhar Bindal
Sep 8, 2016

i will share a slightly shorter approach

let pi/16 =x

lets club first and last term

tan^2(x)+cot^2(x) =[ sin^4(x)+cos^4(x) ]/[sinxcosx]^2

Using sin^4(x)+cos^4(x) = 1-2(sinxcosx)^2

similarly doing for second and third term

And solving further we get

4(cosec^2(2x)+cosec^2(6x)-1)

Now use cosec^2(y)= 1+cot^2(y)

cot^2(2x) = 3+2*root2

cot^2(6x) = 3-2*root 2

Nice solution!

P.S. I would suggest that you learn L a T e X LaTeX . That way your solutions will look more neat, presentable and easier to follow and understand. :)

Tapas Mazumdar - 4 years, 9 months ago
Anurag Pandey
Sep 11, 2016

tan 2 π 16 + tan 2 3 π 16 + tan 2 5 π 16 + tan 2 7 π 16 \tan^{2} \frac{\pi}{16} + \tan^{2} \frac{3\pi}{16} + \tan^{2} \frac{5\pi}{16} + \tan^{2} \frac{7\pi}{16} = tan 2 π 16 + cot 2 π 16 + tan 2 3 π 16 + cot 2 3 π 16 = \tan^{2} \frac{\pi}{16} + \cot^{2}\frac{\pi}{16} + \tan^{2} \frac{3\pi}{16} + \cot^{2}\frac{3\pi}{16} = sin 2 π 16 cos 2 π 16 + cos 2 π 16 sin 2 π 16 + sin 2 3 π 16 cos 2 3 π 16 + cos 2 3 π 16 sin 2 3 π 16 =\frac{\sin^2\frac{\pi}{16}}{\cos^2\frac{\pi}{16}}+ \frac{\cos^2\frac{\pi}{16}}{\sin^2\frac{\pi}{16}} +\frac{\sin^2\frac{3\pi}{16}}{\cos^2\frac{3\pi}{16}}+ \frac{\cos^2\frac{3\pi}{16}}{\sin^2\frac{3\pi}{16}} = sin 4 π 16 + cos 4 π 16 sin 2 π 16 × cos 2 π 16 + sin 4 3 π 16 + cos 4 3 π 16 sin 2 3 π 16 × cos 2 3 π 16 =\frac{\sin^4\frac{\pi}{16} + \cos^4\frac{\pi}{16} } {\sin^2\frac{\pi}{16} \times \cos^2\frac{\pi}{16} } +\frac{\sin^4\frac{3\pi}{16} + \cos^4\frac{3\pi}{16} } {\sin^2\frac{3\pi}{16} \times \cos^2\frac{3\pi}{16} } = 1 ( 2 sin 2 π 16 × cos 2 π 16 ) sin 2 π 16 × cos 2 π 16 + 1 ( 2 sin 2 3 π 16 × cos 2 3 π 16 ) sin 2 3 π 16 × cos 2 3 π 16 =\frac {1 - (2\sin^2\frac{\pi}{16}\times\cos^2\frac{\pi}{16})}{\sin^2\frac{\pi}{16}\times\cos^2\frac{\pi}{16}} + \frac {1 - (2\sin^2\frac{3\pi}{16}\times\cos^2\frac{3\pi}{16})}{\sin^2\frac{3\pi}{16}\times\cos^2\frac{3\pi}{16}} = 4 sin 2 2 π 16 + 4 sin 2 6 π 16 4 = \frac{4}{\sin^2\frac{2\pi}{16}} + \frac{4}{\sin^2\frac{6\pi}{16}} -4 = 4 × ( s i n 2 3 π 8 + s i n 2 π 8 s i n 2 3 π 8 × s i n 2 π 8 ) 4 =4 \times \left( \frac{sin^2\frac{3\pi}{8} + sin^2\frac{\pi}{8}}{sin^2\frac{3\pi}{8}\times sin^2\frac{\pi}{8}} \right) - 4 = 16 × [ 1 ( c o s 2 3 π 8 s i n 2 π 8 ) ] ( 2 s i n 3 π 8 × s i n π 8 ) 2 4 =16 \times \frac{ [1- (cos^2\frac{3\pi}{8} - sin^2\frac{\pi}{8})]}{(2 \space sin\frac{3\pi}{8}\times sin\frac{\pi}{8})^2} - 4 = 16 × [ 1 ( c o s π 2 × c o s π 4 ) ] ( c o s π 4 c o s π 2 ) 2 4 =16 \times \frac{ [1- (cos\frac{\pi}{2} \times cos\frac{\pi}{4})]}{(cos\frac{\pi}{4} - cos \frac{\pi}{2})^2} - 4 = 16 ( 1 2 ) 2 4 =\frac{16}{(\frac{1}{\sqrt2})^2} - 4 = 32 4 =32 - 4 = 28 =\boxed{28} .

P.S : I have used the identities:

( a ) cos 2 x sin 2 y = cos ( x + y ) × cos ( x y ) (a)\cos^2x - \sin^2y = \cos(x+y) \times \cos(x-y)

( b ) 2 sin x sin y = cos ( x y ) cos ( x + y ) (b)\space 2\sin x \sin y = \cos(x-y) - \cos(x+y)

( c ) sin 4 x + cos 4 x = 1 2 sin 2 x cos 2 x (c)\sin^4x + \cos^4x = 1 - 2 \sin^2x \cos^2x

( d ) 2 sin x cos x = sin 2 x (d)\space 2 \sin x \cos x = \sin2x

( e ) cot ( π 2 x ) = tan x (e) \cot (\frac{\pi}{2} - x ) = \tan x .

Good use of elementary trigonometric identities.

P.S. You have made a typing mistake in your solution.

Instead of:

sin 2 π 16 cos 2 π 16 + cos 2 π 16 sin 2 π 16 + sin 2 3 π 16 cos 2 3 π 16 + cos 2 3 π 16 sin 2 3 π 16 = sin 4 π 16 + cos 4 π 16 sin 2 π 16 × cos 2 π 16 + sin 4 3 π 16 + cos 4 3 π 16 sin 2 3 π 16 × cos 2 3 π 16 \dfrac{\sin^{2}\frac{\pi}{16}}{\cos^{2}\frac{\pi}{16}}+\dfrac{\cos^{2}\frac{\pi}{16}}{\sin^{2}\frac{\pi}{16}}+\dfrac{\sin^{2}\frac{3\pi}{16}}{\cos^{2}\frac{3\pi}{16}}+\dfrac{\cos^{2}\frac{3\pi}{16}}{\sin^{2}\frac{3\pi}{16}} = \dfrac{\sin^{4}\frac{\pi}{16}+\cos^{4}\frac{\pi}{16}}{\sin^{2}\frac{\pi}{16}\times\cos^{2}\frac{\pi}{16}} + \dfrac{\sin^{4}\frac{3\pi}{16}+\cos^{4}\frac{3\pi}{16}}{\sin^{2}\frac{3\pi}{16}\times\cos^{2}\frac{3\pi}{16}}

You typed in this by mistake:

sin 2 π 16 cos 2 π 16 + cos 2 π 16 sin 2 π 16 + sin 2 3 π 16 cos 2 3 π 16 + cos 2 3 π 16 sin 2 3 π 16 = sin 4 π 6 + cos 4 π 16 sin 4 π 16 × cos 4 π 16 + sin 4 3 π 6 + cos 4 3 π 16 sin 4 3 π 16 × cos 4 3 π 16 \dfrac{\sin^{2}\frac{\pi}{16}}{\cos^{2}\frac{\pi}{16}}+\dfrac{\cos^{2}\frac{\pi}{16}}{\sin^{2}\frac{\pi}{16}}+\dfrac{\sin^{2}\frac{3\pi}{16}}{\cos^{2}\frac{3\pi}{16}}+\dfrac{\cos^{2}\frac{3\pi}{16}}{\sin^{2}\frac{3\pi}{16}} = \dfrac{\sin^{4}\frac{\pi}{6}+\cos^{4}\frac{\pi}{16}}{\sin^{4}\frac{\pi}{16}\times\cos^{4}\frac{\pi}{16}} + \dfrac{\sin^{4}\frac{3\pi}{6}+\cos^{4}\frac{3\pi}{16}}{\sin^{4}\frac{3\pi}{16}\times\cos^{4}\frac{3\pi}{16}}

See the mistake?

Tapas Mazumdar - 4 years, 9 months ago

Log in to reply

Thanks ! I have edited it .

Anurag Pandey - 4 years, 9 months ago

Log in to reply

Sorry. But there's one more mistake there.

Check it again. It is π 6 \dfrac{\pi}{6} and 3 π 6 \dfrac{3\pi}{6} instead of π 16 \dfrac{\pi}{16} and 3 π 16 \dfrac{3\pi}{16} in the sin 4 ( ) \sin^{4}\left(\cdot\right) function in both the numerators.

Tapas Mazumdar - 4 years, 9 months ago

Log in to reply

@Tapas Mazumdar Error. Mistake not found . Lol (Edited) Thanks again .

Anurag Pandey - 4 years, 9 months ago

Log in to reply

@Anurag Pandey Hehe, welcome. :)

Tapas Mazumdar - 4 years, 9 months ago

cos 2 A = 2 cos 2 A 1 = 1 2 sin 2 A = cos 2 A sin 2 A . cos π 8 = cos π 4 + 1 2 = 2 2 + 1 2 = 1 2 2 + 2 . . . . . . . . . . ( 1 ) A l s o sin π 8 = 1 sin π 4 2 = 1 2 2 2 = 1 2 2 2 . . . . . . . . . . ( 2 ) 1 tan 2 π 8 = ( ( 2 ) ( 1 ) ) 2 = 2 + 2 2 2 = 6 + 2 2 2 2 = 3 + 2 2 . . . . . . . . . . . . . . . S i m i l a r l y tan 2 π 8 = 3 2 2 . . . . . . . . . . @ @ tan ( 7 π 16 ) = 1 tan ( π 2 7 π 16 ) = 1 tan ( π 16 ) . tan 5 π 16 = 1 tan ( π 2 5 π 16 ) = 1 tan ( 3 π 16 ) . A n d t a n 2 3 π 8 = tan 2 ( ( π 3 π 8 ) ) = tan 2 π 8 . A l s o tan 2 x + 1 tan 2 x = sin 2 x cos 2 x + cos 2 x sin 2 x = sin 4 x + cos 4 x sin 2 x cos 2 x = ( cos 2 x sin 2 x ) 2 + 2 sin 2 x cos 2 x sin 2 x cos 2 x = 4 ( cos 2 2 x ) 2 sin 2 2 x + 2 = 4 tan 2 2 x + 2. S i n c e 2 x = π 8 , a n d , @ @ ; tan 2 π 16 + tan 2 3 π 16 + tan 2 5 π 16 + tan 2 7 π 16 = tan 2 π 16 + 1 tan 2 ( π 16 ) + 1 tan 2 ( 3 π 16 ) + tan 2 3 π 16 = 4 tan 2 π 8 + 2 + 4 tan 2 3 π 8 + 2 = 4 ( 3 + 2 2 ) + 2 + 4 ( 3 2 2 ) + 2 = 28. \color{#20A900}{\cos 2A=2\cos^2 A-1=1-2\sin^2 A=\cos^2 A - \sin^2 A.\\ \therefore\ \ \ \ \cos \frac \pi 8=\sqrt{\dfrac{\cos\frac \pi 4+1} 2}=\sqrt{ \dfrac{\frac {\sqrt2} 2+1} 2 }=\frac 1 2 *\sqrt{2+\sqrt2}..........(1)\\ Also\ \ \sin \frac \pi 8=\sqrt{\dfrac{1 - \sin\frac \pi 4} 2}=\sqrt{\dfrac{1 -\frac {\sqrt2} 2 } 2}=\frac 1 2 *\sqrt{2-\sqrt2}..........(2)\\ \implies\ \ \dfrac 1 {\tan^2 \frac \pi 8}=(\dfrac {(2)}{(1)})^2 =\dfrac {2 + \sqrt2} { 2-\sqrt2` }=\dfrac{6 + 2*2*\sqrt2} 2= 3 + 2 \sqrt2 ...............\color{#3D99F6}{**} \\ Similarly\ \ \ \tan^2 \frac \pi 8=3 -2\sqrt2..........\color{#E81990}{@@} }\\ \\ \ \ \ \\ \ \ \ \ \\ \tan(\frac {7 \pi}{16})= - \dfrac 1 {\tan(\frac \pi 2 - \frac {7 \pi} {16})} = \dfrac 1 {\tan( - \frac \pi {16}) }.\\ \tan\frac {5 \pi} {16}=\dfrac 1 { \tan ( \frac \pi 2 -\frac {5\pi} {16})}=\dfrac 1 {\tan(\frac{3 \pi }{16})}.\\ And\ \ tan^2 \frac{3\pi} 8= \tan^2(-(\pi - \frac{3\pi} 8) )=\tan^2 \frac{\pi} 8.\\ \\ \ \ \ \ \\ \ \ \ \ \\ \color{#EC7300}{Also\ \ \tan^2 x + \dfrac 1{ \tan^2 x} \; = \dfrac{\sin^2 x}{\cos^2 x} +\dfrac{ \cos^2 x}{\sin^2 x} \\ =\dfrac{\sin^4 x + \cos^4 x}{\sin^2 x\cos^2 x} \; = \; \dfrac{(\cos^2 x - \sin^2 x)^2+ 2\sin^2 x*\cos^2 x}{\sin^2 x\cos^2 x}\\ =\dfrac{4( \cos^2 2x)^2 }{\sin^2 2x}+2 \; =\dfrac 4 {\tan^2 2x} +2.}\\ \\ \ \ \ \ \\ \ \ \ \\ Since \ \ 2x=\frac \pi 8,\ \ \ and\ \ \ \color{#3D99F6}{**},\ \ \ \ \color{#E81990}{@@}; \ \ \\ \tan^{2} \frac{\pi}{16} + \tan^{2} \frac{3\pi}{16} + \tan^{2} \frac{5\pi}{16} + \tan^{2} \frac{7\pi}{16} \\ = \tan^{2} \frac{\pi}{16} + \dfrac 1 { \tan^2(-\frac \pi {16}) } \ \ \ \ + \ \ \ \ \dfrac 1 {\tan^2(\frac{3 \pi }{16})} + \tan^2 \frac{3\pi}{16} \\ =\dfrac 4 {\tan^2 \frac{\pi} 8} +2 \ \ \ +\ \ \ \dfrac 4 {\tan^2 \frac{3\pi} 8} +2 \\ =4(3 + 2\sqrt2) + 2\ \ \ +\ \ \ 4(3 - 2\sqrt2) + 2= \Large\ \ \color{#D61F06}{28}.\\

Interesting to note for angle π 2 n \dfrac \pi {2^n}
A p p l y i n g H a l f A n g l e F o r m u l a , C o s π 4 = 2 2 . C o s π 8 = 2 + 2 2 . C o s π 16 = 2 + 2 + 2 2 . C o s π 32 = 2 + 2 + 2 + 2 2 . S i n π 4 = 2 2 . S i n π 8 = 2 2 2 . S i n π 16 = 2 2 + 2 2 . S i n π 32 = 2 2 + 2 + 2 2 . And so on. \color{#E81990}{Applying\ Half\ Angle\ Formula,\\ Cos\frac \pi 4=\dfrac{\sqrt2} 2.\\ Cos\frac \pi 8=\dfrac{\sqrt{2+\sqrt2} } 2.\\ Cos\frac \pi {16}=\dfrac{\sqrt{2+\sqrt{2+\sqrt2} }} 2.\\ Cos\frac \pi {32}=\dfrac{\sqrt{2+\sqrt{2+\sqrt{2+\sqrt2} } } } 2. \\ Sin\frac \pi 4=\dfrac{\sqrt2} 2.\\ Sin\frac \pi 8=\dfrac{\sqrt{2 - \sqrt2} } 2.\\ Sin\frac \pi {16}=\dfrac{\sqrt{2 - \sqrt{2+\sqrt2} }} 2.\\ Sin\frac \pi {32}=\dfrac{\sqrt{2- \sqrt{2+\sqrt{2+\sqrt2} } } } 2. }\\ \text{And so on. }

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...