Logarithm,Double integrals

Calculus Level 5

0 1 0 1 ln 2 ( 1 x y ) x y d x d y \displaystyle \int _{ 0 }^{ 1 }\int _{ 0 }^{ 1 } \dfrac { { \ln }^{ 2 }(1-xy) }{ xy } \ dx \ dy

If the double integral above can be represented as π A B \dfrac { { \pi }^{ A } }{ B } , where A , B A,B are positive integers, find A 2 + B 2 32236 A^2+B^2-32236 .

This is original. Check out my Set


The answer is 180.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Pratik Shastri
Mar 6, 2015

I = 0 1 0 1 log 2 ( 1 x y ) x y d x d y = 0 1 0 1 log ( 1 x y ) log ( 1 x y ) x y d x d y = 0 1 0 1 m = 1 n = 1 1 x y ( x y ) m + n m n d x d y = 0 1 0 1 m = 1 n = 1 ( x y ) m + n 1 m n d x d y = m = 1 n = 1 1 ( m + n ) 2 m n = T ( 1 , 1 , 2 ) = ζ ( 4 ) 2 \begin{aligned} I&=\int_{0}^{1} \int_{0}^{1} \dfrac{\log^2(1-xy)}{xy} \mathrm{d}x \ \mathrm{d}y\\ &=\int_{0}^{1} \int_{0}^{1} \dfrac{\log(1-xy) \log(1-xy)}{xy} \mathrm{d}x \ \mathrm{d}y\\ &= \int_{0}^{1} \int_{0}^{1} \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \dfrac{1}{xy} \dfrac{(xy)^{m+n}}{mn} \mathrm{d}x \ \mathrm{d}y\\ &= \int_{0}^{1} \int_{0}^{1} \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \dfrac{(xy)^{m+n-1}}{mn} \mathrm{d}x \ \mathrm{d}y\\ &=\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \dfrac{1}{(m+n)^2mn}\\ &=T(1,1,2)\\ &=\dfrac{\zeta (4)}{2} \end{aligned}

For the double last sum, refer to the following three papers -

1

2

3

So do you know the identity from the begining that m = 0 n = 0 1 ( m + n ) 2 m n = ζ ( 4 ) 2 \displaystyle \sum_{m=0}^{\infty} \displaystyle \sum_{n=0}^{\infty} \dfrac{1}{ (m+n)^2mn } = \dfrac{\zeta(4)}{2} , because this was the main part of the problem.

Ronak Agarwal - 6 years, 3 months ago

Log in to reply

I wasn't very sure about evaluating the double sum. I referred to the following two papers -

1

2

Pratik Shastri - 6 years, 3 months ago

Log in to reply

Well @Azhaghu Roopesh M has solved this problem too, I wonder how he has evaluated this sum. Can you please post the solution about the summation Azhaghu. Thanks, well I believe you are practicing double summations it seems.

Ronak Agarwal - 6 years, 3 months ago

Log in to reply

@Ronak Agarwal The initial steps are too simple , just as Pratik has done it . Now for the double summation what I did was ,

m = 0 n = 0 1 ( m + n ) 2 m n = m = 0 n = 0 1 2 ( 2 m n m 2 n 2 ( m + n ) 2 ) = m = 0 n = 0 1 2 ( ( m + n ) 2 m 2 n 2 m 2 n 2 ( m + n ) 2 ) = 1 2 ( m = 0 n = 0 1 m 2 n 2 m = 0 n = 0 1 n 2 ( m + n ) 2 m = 0 n = 0 1 m 2 ( m + n ) 2 ) = 1 2 ( π 4 36 2 × π 4 120 ) = π 4 180 \displaystyle \sum_{m=0}^{\infty} \displaystyle \sum_{n=0}^{\infty} \dfrac{1}{ (m+n)^2mn } \\= \displaystyle \sum_{m=0}^{\infty} \displaystyle \sum_{n=0}^{\infty} \frac{1}{2} \left ( \dfrac{2mn}{m^{2}n^{2}(m+n)^{2}} \right ) \\= \displaystyle \sum_{m=0}^{\infty} \displaystyle \sum_{n=0}^{\infty} \frac{1}{2} \left ( \dfrac{(m+n)^{2}-m^{2}-n^{2}}{m^{2}n^{2}(m+n)^{2}} \right ) \\= \dfrac{1}{2} \left ( \displaystyle \sum_{m=0}^{\infty} \displaystyle \sum_{n=0}^{\infty} \dfrac{1}{m^{2}n^{2}} - \displaystyle \sum_{m=0}^{\infty} \displaystyle \sum_{n=0}^{\infty} \dfrac{1}{n^{2}(m+n)^{2}} - \displaystyle \sum_{m=0}^{\infty} \displaystyle \sum_{n=0}^{\infty} \dfrac{1}{m^{2}(m+n)^{2}} \right ) \\= \frac{1}{2} \left ( \dfrac{\pi^{4}}{36} - 2\times \dfrac{\pi^{4}}{120} \right ) \\= \dfrac{\pi^{4}}{180} .

A Former Brilliant Member - 6 years, 3 months ago

Log in to reply

@A Former Brilliant Member Kindly enlighten me how you evaluated n = 1 m = 1 1 m 2 ( m + n ) 2 \displaystyle \sum _{ n=1 }^{ \infty }{ \sum _{ m=1 }^{ \infty }{ \frac { 1 }{ { m }^{ 2 }{ (m+n) }^{ 2 } } } }

Ronak Agarwal - 6 years, 3 months ago

Log in to reply

@Ronak Agarwal I had used Wolfram Alpha to get that summation done , I'm still not well versed with it .

A Former Brilliant Member - 6 years, 3 months ago

Even I have the first pdf , where did you get it from ?

A Former Brilliant Member - 6 years, 3 months ago

I didn't know that you were interested in Naruto ! Do you read the Manga (used to) or watch the Anime ?

A Former Brilliant Member - 6 years, 3 months ago

Log in to reply

Both. I follow it very closely.

Pratik Shastri - 6 years, 3 months ago

Log in to reply

It's good to meet another fan of Naruto !

A Former Brilliant Member - 6 years, 3 months ago

Did the exact same!!

Kartik Sharma - 6 years ago
Ronak Agarwal
Mar 6, 2015

As Pratik Shastri has bought it down to a summation I am here giving a method finding that summation.

I have skipped many small manipulations steps, so kindly go through it a little deeper you will realise what I have done.

Let S = n = 1 m = 1 1 ( m + n ) 2 m n S =\displaystyle \sum _{ n=1 }^{ \infty }{ \sum _{ m=1 }^{ \infty }{ \frac { 1 }{ { (m+n) }^{ 2 }mn } } }

Now for m + n = k m+n =k we can rewrite the summation as :

S = k = 2 1 k 2 m + n = k 1 m n \displaystyle S = \sum _{ k=2 }^{ \infty }{ \frac { 1 }{ { k }^{ 2 } } \sum _{ m+n=k }^{ }{ \frac { 1 }{ mn } } }

Hence S = k = 2 1 k 2 r = 1 k 1 1 r ( k r ) \displaystyle S = \sum _{ k=2 }^{ \infty }{ \frac { 1 }{ { k }^{ 2 } } \sum _{ r=1 }^{ k-1 }{ \frac { 1 }{ r(k-r) } } }

Now S = ( k = 2 1 k 3 ) r = 1 k 1 ( 1 r + 1 k r ) \displaystyle S = (\sum _{ k=2 }^{ \infty }{ \frac { 1 }{ { k }^{ 3 } } )\sum _{ r=1 }^{ k-1 }{ (\frac { 1 }{ r } +\frac { 1 }{ k-r } } ) }

S = ( k = 2 2 k 3 ) r = 1 k 1 ( 1 r ) \Rightarrow \displaystyle S = (\sum _{ k=2 }^{ \infty }{ \frac { 2 }{ { k }^{ 3 } } )\sum _{ r=1 }^{ k-1 }{ (\frac { 1 }{ r } ) } }

S = 2 ( k = 2 1 k 3 r = 1 k 1 r k = 2 1 k 4 ) \Rightarrow \displaystyle S = 2(\sum _{ k=2 }^{ \infty }{ \frac { 1 }{ { k }^{ 3 } } \sum _{ r=1 }^{ k }{ \frac { 1 }{ r } } } -\sum _{ k=2 }^{ \infty }{ \frac { 1 }{ { k }^{ 4 } } } )

S = 2 ( k = 1 1 k 3 r = 1 k 1 r k = 1 1 k 4 ) \Rightarrow \displaystyle S = 2(\sum _{ k=1 }^{ \infty }{ \frac { 1 }{ { k }^{ 3 } } \sum _{ r=1 }^{ k }{ \frac { 1 }{ r } } } -\sum _{ k=1 }^{ \infty }{ \frac { 1 }{ { k }^{ 4 } } } )

Remember r = 1 k 1 r = r = 1 1 r 1 r + k = r = 1 k r ( r + k ) \displaystyle \sum _{ r=1 }^{ k }{ \frac { 1 }{ r } } =\sum _{ r=1 }^{ \infty }{ \frac { 1 }{ r } -\frac { 1 }{ r+k } } =\sum _{ r=1 }^{ \infty }{ \frac { k }{ r(r+k) } }

Finally our summation becomes :

S = 2 ( k = 1 r = 1 1 k r 2 ( r + k ) ζ ( 4 ) ) \Rightarrow \displaystyle S =2(\sum _{ k=1 }^{ \infty }{ \sum _{ r=1 }^{ \infty }{ \frac { 1 }{ k{ r }^{ 2 }(r+k) } } } - \zeta(4))

Now since k , r k,r are equivalent and replacing k , r k,r with each other we have :

S = 2 ( k = 1 r = 1 1 r k 2 ( r + k ) ζ ( 4 ) ) \Rightarrow \displaystyle S = 2(\sum _{ k=1 }^{ \infty }{ \sum _{ r=1 }^{ \infty }{ \frac { 1 }{ r{ k }^{ 2 }(r+k) } } } - \zeta(4) )

Add this equation with the previous equation we have :

2 S = 2 ( k = 1 r = 1 1 ( r k ) 2 2 ζ ( 4 ) ) \displaystyle 2S = 2(\sum _{ k=1 }^{ \infty }{ \sum _{ r=1 }^{ \infty }{ \frac { 1 }{ { (rk) }^{ 2 } } } } - 2\zeta(4))

S = π 4 180 \Rightarrow S = \dfrac { { \pi }^{ 4 } }{ 180 }

@Ronak Agarwal ,can you tell me from where i can learn about these technique, I quite a beginnere in multiple integrals. Thanks!

Parth Lohomi - 6 years ago

Log in to reply

I am also a begineer in these, you know making problems is easier than solving them.

Ronak Agarwal - 6 years ago

Log in to reply

OK, I got it thanks

Parth Lohomi - 6 years ago

Hey Ronak! Nice problem! Is it original or did you see it somewhere?

Super Shooter - 5 years, 11 months ago
Akshay Bodhare
Apr 3, 2015

Another method to evaluate the sum, m = 1 n = 1 1 m n ( m + n ) 2 = m = 1 n = 1 m + n m n ( m + n ) 3 \displaystyle\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \frac{1}{mn(m+n)^2}=\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \frac{m+n}{mn(m+n)^3}

m = 1 n = 1 m + n m n ( m + n ) 3 = 2 m = 1 n = 1 1 m ( m + n ) 3 \displaystyle\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \frac{m+n}{mn(m+n)^3}=2\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \frac{1}{m(m+n)^3}

2 m = 1 n = 1 1 m ( m + n ) 3 = 2 n = 1 H n ( n + 1 ) 3 \displaystyle2\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \frac1{m(m+n)^3}=2\sum_{n=1}^{\infty} \frac{H_n}{(n+1)^3}

2 n = 1 H n ( n + 1 ) 3 = 2 ( n = 0 H n + 1 ( n + 1 ) 3 ζ ( 4 ) ) \displaystyle2\sum_{n=1}^{\infty} \frac{H_n}{(n+1)^3}=2(\sum_{n=0}^{\infty} \frac{H_{n+1}}{(n+1)^3}-\zeta ({4}))

2 n = 1 H n ( n + 1 ) 3 = 2 ( π 4 72 ζ ( 4 ) ) \displaystyle2\sum_{n=1}^{\infty} \frac{H_n}{(n+1)^3}=2(\frac{\pi^4}{72}-\zeta ({4}))

For the last step, H n = m = 1 1 m 1 m + n \displaystyle H_n= \sum_{m=1}^{\infty} \frac{1}{m} - \frac{1}{m+n} Therfore, n = 1 H n n 3 = m , n 1 1 m n 2 ( m + n ) \displaystyle\sum_{n=1}^{\infty} \frac{H_{n}}{n^3}=\sum_{m,n \geq 1} \frac {1}{mn^2(m+n)}

Since the last sum is symmetric,replace m by n and add both,

m , n 1 1 m n 2 ( m + n ) = 1 2 ζ 2 ( 2 ) \displaystyle\sum_{m,n \geq 1} \frac {1}{mn^2(m+n)}=\frac{1}{2} \zeta^2 (2)

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...