Double Natural Logs

Calculus Level 4

What is the value of 0 1 ln ( ln ( 1 u ) ) d u . \int _{ 0 }^{ 1 }{\ln\left(\ln\left(\frac { 1 }{ u }\right )\right)du }.


The answer is -0.5772.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Haroun Meghaichi
Aug 24, 2014

Set u = e t u=e^{-t} then the integral becomes : 0 e t ln t d t = d ( Γ ( x ) ) d x x = 1 = γ \int_0^{\infty} e^{-t} \ln t\ \mathrm{d}t = \frac{\mathrm{d}(\Gamma(x))}{\mathrm{d}x} \bigg|_{x=1} =-\gamma A Proof that Γ ( 1 ) = γ \Gamma'(1)=-\gamma : This proof can be found in many real analysis books.

Using dominated convergence theorem we can note that : 0 e x ln x d x = lim n 0 n ( 1 x n ) n ln x d x \int_0^{\infty} e^{-x} \ln x \ \mathrm{d}x= \lim_{n\to \infty} \int_0^{n}\left(1-\frac{x}{n} \right)^n \ln x \ \mathrm{d}x Set x = n t x=n t you'll get lim n n 0 1 ln n ( 1 t ) n + ( 1 t ) n ln t d t = lim n n n + 1 ln n + n 0 1 ln t ( 1 t ) n d t \lim_{n\to \infty} n \int_0^{1} \ln n (1-t)^n + (1-t)^n\ln t \ \mathrm{d}t=\lim_{n\to \infty} \frac{n}{n+1} \ln n + n\int_0^1 \ln t (1-t)^n \ \mathrm{d} t The latter integral can be evaluate by y = 1 t y=1-t and then by parts easily : 0 1 y n ln ( 1 y ) d y = 1 n + 1 0 1 y n + 1 1 y 1 d y = H n + 1 n + 1 \int_0^1y^n \ln(1-y)\ \mathrm{d}y =\frac{-1}{n+1} \int_0^1 \frac{y^{n+1}-1}{y-1} \ \mathrm{d} y = \frac{-H_{n+1}}{n+1} The last equality follows from the geometric sequence sum, then Γ ( 1 ) = n n + 1 ( ln n H n + 1 ) = γ . \Gamma'(1)= \frac{n}{n+1}\left(\ln n - H_{n+1} \right) = -\gamma.

Ψ ( 1 ) \Psi(1)

Anastasiya Romanova - 6 years, 9 months ago

Great solution! I liked how you proved that Γ ( 1 ) = γ \Gamma ' (1) = -\gamma .

Steven Zheng - 6 years, 9 months ago

You are correct, but it was sort of confusing for me at set x = n t . x =nt. I think it is more obvious (for the reader) if you let t = 1 x n . t = 1-\frac{x}{n}. That way, you don't have to wrap your head around the transformed limits a=0 and b=1. Also, it leads directly to the integral 0 1 t n l n ( 1 t ) d t \int _{ 0 }^{ 1 }{ { t }^{ n } } ln\left( 1-t \right) dt so you don't need to make another substitution y = 1 t y = 1-t .

Steven Zheng - 6 years, 9 months ago

@Steven Zheng I didn't give it much attention. After all, it is a well known fact.

Haroun Meghaichi - 6 years, 9 months ago

Log in to reply

You mentioned "Tell me what do you like about math and I'll tell you who you are." on your homepage. If I like geometry and number theory, what type of person would I be?

Steven Zheng - 6 years, 9 months ago

Log in to reply

@Steven Zheng Someone who likes nature and admires beauty, and attempts to finds patterns and symmetry in everyday life.

That's may not be accurate.

Haroun Meghaichi - 6 years, 9 months ago

Log in to reply

@Haroun Meghaichi Wow. That's accurate. I'm not kidding!

Steven Zheng - 6 years, 9 months ago
Hasan Kassim
Aug 24, 2014

Integrating by parts with x = ln ( ln ( u ) ) , d v = d u \displaystyle x=\ln (-\ln (u)) , dv=du

= > d x = 1 u ln u d u , v = u \displaystyle => dx=\frac{1}{u\ln u} du , v=u

\displaystyle => I= \int_0^1 \mathrm \ln (-\ln u) \mathrm{d}u = \left. u\ln (-\ln u) \right|_0^1 - \int_0^1 \mathrm{ \frac{1}{\ln u} }\mathrm{d}u

Solving the second integral, let u = e t , d u = e t d t \displaystyle u=e^{-t}, du = -e^{-t} dt

= > 0 1 1 ln u d u = 0 e t t d t = 0 e t t d t \displaystyle => \int_0^1 \mathrm{ \frac{1}{\ln u} }\mathrm{d}u= \int_{\infty }^0 \mathrm{ \frac{e^{-t}}{t} }\mathrm{d}t= -\int_0^{\infty} \mathrm{ \frac{e^{-t}}{t} }\mathrm{d}t

Note the definition of the exponential integral: x e t t d t = E i ( x ) \displaystyle -\int_{-x}^{\infty} \mathrm{ \frac{e^{-t}}{t} }\mathrm{d}t= Ei(x)

< = > 0 1 1 ln u d u = 0 e t t d t = lim x 0 E i ( x ) \displaystyle <=>\int_0^1 \mathrm{ \frac{1}{\ln u} }\mathrm{d}u= -\int_0^{\infty} \mathrm{ \frac{e^{-t}}{t} }\mathrm{d}t= \lim_{x \to 0} Ei(x)

Hence, I = u ln ( ln u ) 0 1 lim x 0 E i ( x ) \displaystyle I = \left. u\ln (-\ln u) \right|_0^1 - \lim_{x \to 0} Ei(x)

we have: u ln ( ln u ) 0 1 = lim u 1 u ln ( ln u ) lim u 0 u ln ( ln u ) \displaystyle \left. u\ln (-\ln u) \right|_0^1= \lim_{u \to 1} u\ln (-\ln u)- \lim_{u \to 0} u\ln (-\ln u)

by direct substitution, lim u 0 u ln ( ln u ) = lim u 0 ln ( ln u ) 1 u = \displaystyle \lim_{u \to 0} u\ln (-\ln u)=\lim_{u \to 0} \frac{\ln (-\ln u)}{\frac{1}{u}} = \frac{\infty}{\infty}

so using L'Hopital rule : lim u 0 ln ( ln u ) 1 u = lim u 0 1 u ln u 1 u 2 = lim u 0 u ln u = 0 \displaystyle \lim_{u \to 0} \frac{\ln (-\ln u)}{\frac{1}{u}}=\lim_{u \to 0} \frac{\frac{1}{u\ln u}}{-\frac{1}{u^2}}=\lim_{u \to 0} -\frac{u}{\ln u} =0

now we are left with I = lim u 1 u ln ( ln u ) lim x 0 E i ( x ) \displaystyle I= \lim_{u \to 1} u\ln (-\ln u) - \lim_{x \to 0} Ei(x) . With direct substitution, I = + \displaystyle I=-\infty +\infty , an indetermined form.

But I = lim u 1 u ln ( ln u ) lim x 0 E i ( x ) = lim u 1 ln ( ln u ) lim x 0 E i ( x ) \displaystyle I= \lim_{u \to 1} u\ln (-\ln u) - \lim_{x \to 0} Ei(x) = \lim_{u \to 1} \ln (-\ln u) - \lim_{x \to 0} Ei(x)

= lim x 0 ln ( x ) lim x 0 E i ( x ) \displaystyle = \lim_{x \to 0} \ln (x) - \lim_{x \to 0} Ei(x) (substitution x = ln u \displaystyle x=-\ln u )

= lim x 0 ( ln ( x ) E i ( x ) ) \displaystyle = \lim_{x \to 0} (\ln (x) - Ei(x))

Note that E i ( x ) = γ + ln x + k = 1 x k k k ! \displaystyle Ei(x) = \gamma + \ln x + \sum_{k=1}^{\infty} \frac{x^k}{k k!}

= > I = lim x 0 ( ln ( x ) E i ( x ) ) = lim x 0 ( γ k = 1 x k k k ! ) \displaystyle => I= \lim_{x \to 0} (\ln (x) - Ei(x))=\lim_{x \to 0} ( - \gamma - \sum_{k=1}^{\infty} \frac{x^k}{k k!})

The terms of the sum are all zero for x = 0 \displaystyle x=0 , therefore:

I = γ \displaystyle \boxed{I=-\gamma}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...