and
. In each circular segment, we inscribe a triangle. The triangles are both evolving so that the two orange angles are always equal. The purple line and the red line, are the
Euler line
of the triangles. When the red and purple line are exactly the same, the tangent of one orange angle can be expressed as
, where
and
are square-free coprime positive integers. Find
.
-
Note
: the triangles need to exist when the two lines are the same.
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Let the dividing yellow chord be A B , and the upper and lower moving points be C and C ′ respectively. From the compilation of calculations in Dynamic Geometry: P96 Series , we know that ∠ A C B = π − tan − 1 5 1 2 and ∠ A C ′ B = tan − 1 5 1 2 . Let the orange angle ∠ C A B = ∠ C ′ A B = θ . Then ∠ C B A = tan − 1 5 1 2 − θ and ∠ C ′ B A = π − tan − 1 5 1 2 − θ .
The slope of the Euler line of △ A B C is given by:
m e = − m A B + m B C + m C A m A B m B C + m B C m C A + m C A m A B + 3 = − m B C + m C A m B C m C A + 3 = − − tan ( tan − 1 5 1 2 − θ ) + tan θ − tan ( tan − 1 5 1 2 − θ ) tan θ + 3 = − 1 + 5 1 2 t t − 5 1 2 + t 1 + 5 1 2 t t − 5 1 2 t + 3 = − 1 2 t 2 + 1 0 t − 1 2 5 t 2 + 2 4 t + 1 5 where m X Y is the slope of side X Y . Since m A B = 0 Let t = tan θ
Similarly, the slope of the Euler line of △ A B C ′ is:
m e ′ = − m B C ′ + m C ′ A m B C ′ m C ′ A + 3 = − tan ( π − tan − 1 5 1 2 − θ ) − tan θ tan ( π − tan − 1 5 1 2 − θ ) ( − tan θ ) + 3 = − − 1 − 5 1 2 t 5 1 2 + t − t 1 − 5 1 2 t 5 1 2 + t t + 3 = − 1 2 t 2 − 1 0 t − 1 2 5 t 2 − 2 4 t + 1 5
When m e = m e ′ :
1 2 t 2 + 1 0 t − 1 2 5 t 2 + 2 4 t + 1 5 6 0 t 4 + 2 3 8 t 3 − 1 2 0 t 2 − 4 3 8 t − 1 8 0 2 3 8 t 3 1 1 9 t 2 ⟹ t = 1 2 t 2 − 1 0 t − 1 2 5 t 2 − 2 4 t + 1 5 = 6 0 t 4 − 2 3 8 t 3 − 1 2 0 t 2 + 4 3 8 t − 1 8 0 = 4 3 8 t = 2 1 9 = tan θ = 1 1 9 2 1 9 Since t = 0
Therefore p − q = 2 1 9 − 1 1 9 = 1 0 .