Dynamic Geometry: P25

Geometry Level 5

The diagram shows a black semicircle with radius 1 1 . The cyan and the green semicircle are tangent to each other and internally tangent to the black semicircle. They are growing and shrinking freely so that the sum of their radius is always equal to 1 1 . We inscribe a yellow circle so that it's tangent to all three semicircles. The center of the yellow circle traces a locus (purple curve) The area bounded by the purple curve and the diameter of the black semicircle can be expressed as:

f π b c d \frac {f\pi \sqrt b-c}d

where f f , b b , c c and d d , are positive integers, and b b is square-free. Find f + b + c + d f+b+c+d .


The answer is 56.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

  • To solve this problem, we shall denote the radius of the cyan semi-circle as a a , the radius of the green semi-circle as 1 a 1-a and the radius of the yellow circle as R ( a ) R(a) , x ( a ) x(a) is the x x coordinate of the yellow circle's center and y ( a ) y(a) is the y y coordinate of the yellow circle's center.
  • We shall use the Pythagorean theorem to express R ( a ) R(a) , x ( a ) x(a) and y ( a ) y(a) in terms of a a

  • We shall write three equations using the diagram:

  • ( 1 R ( a ) ) 2 = x ( a ) 2 + y ( a ) 2 (1-R(a))^{2}=x(a)^{2}+y(a)^{2}
  • ( 1 a + R ( a ) ) 2 = ( a x ( a ) ) 2 + y ( a ) 2 (1-a+R(a))^{2}=(a-x(a))^{2}+y(a)^{2}
  • ( a + R ( a ) ) 2 = ( 1 a + x ( a ) ) 2 + y ( a ) 2 (a+R(a))^{2}=(1-a+x(a))^{2}+y(a)^{2}

  • After combining the equation and using minor algebra skills we find:
  • R ( a ) = a a 2 a 2 a + 1 R(a)=\dfrac{a-a^{2}}{a^{2}-a+1}
  • x ( a ) = 2 a 1 a 2 a + 1 x\left(a\right)=\dfrac{2a-1}{a^2-a+1}
  • y ( a ) = 2 ( a 2 a ) a 2 + a 1 y\left(a\right)=2\cdot \dfrac{\left(a^2-a\right)}{-a^2+a-1}

  • Now we can use x ( a ) x(a) and y ( a ) y(a) to express y y in terms of x x to get the equation of the locus.
  • We find : y = 2 3 ( 1 + 4 3 x 2 ) y=\dfrac{2}{3}\left(-1+\sqrt{4-3x^2}\right)
  • We now evaluate the required area : 1 1 2 3 ( 1 + 4 3 x 2 ) = 8 π 3 18 27 \int _{-1}^1\dfrac{2}{3}\left(-1+\sqrt{4-3x^2}\right)\:=\dfrac{8\pi \:\sqrt{3}-18}{27}
  • 8 + 3 + 18 + 27 = 56 8+3+18+27=56

Wait... don’t the ‘blue’ and ‘red’ circles all refer to the same yellow circle?

Jeff Giff - 3 months, 3 weeks ago

Log in to reply

Good to see yo ! Corrected. Thanks !

Valentin Duringer - 3 months, 3 weeks ago

Log in to reply

@Jeff Giff Hello, Chew-Seong Cheong made two interesting notes about the series : https://brilliant.org/discussions/thread/about-dynamic-geometry-p80-85-90-95-99-105/?ref id=1615051 https://brilliant.org/discussions/thread/dynamic-geometry-p96-series/?ref id=1615329

Valentin Duringer - 2 months ago

Log in to reply

@Valentin Duringer @Jeff Giff Sir Cheong also made this note : https://brilliant.org/discussions/thread/dynamic-geometry-p32-series/?ref_id=1615485

Valentin Duringer - 1 month, 4 weeks ago
Chew-Seong Cheong
Mar 15, 2021

Let the centers of the large, green, and cyan semicircle, and the yellow circle be O O , A A , B B , and C C , and the radii of the green and cyan semicircles, and the yellow circle be r 1 r_1 , r 2 r_2 , and r r respectively. Then r 1 + r 2 = 1 r_1 + r_2 = 1 . Since A O = 1 r 1 = r 2 AO = 1-r_1 = r_2 and O B = 1 r 2 = r 1 OB = 1 - r_2 = r_1 . By cosine rule ,

B C 2 = O B 2 + O C 2 2 O B O C cos B O C Let B O C = θ . ( r 2 + r ) 2 = r 1 2 + ( 1 r ) 2 2 r 1 ( 1 r ) cos θ . . . ( 1 ) Similarly for C A 2 ( r 1 + r ) 2 = r 2 2 + ( 1 r ) 2 + 2 r 2 ( 1 r ) cos θ . . . ( 2 ) \begin{aligned} BC^2 & = OB^2 + OC^2 - 2\cdot OB \cdot OC \cdot \cos \blue{\angle BOC} & \small \blue{\text{Let }\angle BOC = \theta.} \\ (r_2+r)^2 & = r_1^2 + (1-r)^2 - 2 r_1 (1-r) \cos \blue \theta \quad ...(1) & \small \blue{\text{Similarly for }CA^2} \\ (r_1+r)^2 & = r_2^2 + (1-r)^2 + 2 r_2 (1-r) \cos \theta \quad ...(2) \end{aligned}

From r 2 ( 1 ) + r 1 ( 2 ) r_2 \cdot (1) + r_1 \cdot (2) :

r 2 ( r 2 + r ) 2 + r 1 ( r 1 + r ) 2 = r 2 r 1 2 + r 1 r 2 2 + ( r 2 + r 1 ) ( 1 r ) 2 r 1 3 + r 2 3 + 2 r ( r 1 2 + r 2 2 ) + ( r 1 + r 2 ) r 2 = r 1 r 2 ( r 1 + r 2 ) + ( r 1 + r 2 ) ( 1 2 r + r 2 ) Note that r 1 + r 2 = 1 ( r 1 + r 2 ) ( ( r 1 + r 2 ) 2 3 r 1 r 2 ) + 2 r ( ( r 1 + r 2 ) 2 2 r 1 r 2 ) + r 2 = r 1 r 2 + 1 2 r + r 2 1 3 r 1 r 2 + 2 r 4 r 1 r 2 r + r 2 = r 1 r 2 + 1 2 r + r 2 4 r 4 r 1 r 2 r = 4 r 1 r 2 r 1 r 2 = r 1 + r \begin{aligned}r_2(r_2+r)^2 + r_1(r_1+r)^2 & = r_2r_1^2 + r_1r_2^2 + (r_2+r_1)(1-r)^2 \\ r_1^3 + r_2^3 + 2r(r_1^2+r_2^2) + \blue{(r_1+r_2)}r^2 & = r_1r_2\blue{(r_1+r_2)} + \blue{(r_1+r_2)}(1 - 2r + r^2) & \small \blue{\text{Note that }r_1+r_2 = 1} \\ (r_1+r_2)((r_1+r_2)^2 - 3r_1r_2) + 2r((r_1+r_2)^2 - 2r_1r_2) + r^2 & = r_1r_2 + 1 - 2r + r^2 \\ 1 - 3r_1r_2 + 2r - 4r_1r_2r + r^2 & = r_1r_2 + 1 - 2r + r^2 \\ 4r - 4r_1r_2r & = 4r_1r_2 \\ \implies r_1r_2 & = \frac r{1+r} \end{aligned}

To find what form the locus is, let O = ( 0 , 0 ) O=(0,0) , the origin of the x y xy -plane, and an arbitrary point on the locus C = ( x , y ) C=(x,y) . By Heron's formula , the area of A B C \triangle ABC ,

A = ( r 1 + r 2 + r ) r 1 r 2 r = ( 1 + r ) r 2 1 + r = r Note that r 1 r 2 = r 1 + r \begin{aligned} A_\triangle & = \sqrt{(r_1+r_2+r)\blue{r_1r_2}r} = \sqrt{(1+r) \cdot \frac {r^2}{1+r}} = r & \small \blue{\text{Note that }r_1r_2 = \frac r{1+r}} \end{aligned}

Since the base of A B C \triangle ABC , A B = r 1 + r 2 = 1 AB=r_1+r_2=1 , the height y = 2 r y = 2r . By Pythagorean theorem ,

x 2 + y 2 = O C 2 = ( 1 r ) 2 = 1 2 r + r 2 Note that y = 2 r x 2 + 3 4 y 2 + y = 1 x 2 + 3 4 ( y + 2 3 ) 2 = 4 3 x 2 4 3 + ( y + 2 3 ) 2 16 9 = 1 \begin{aligned} x^2 + y^2 & = OC^2 = (1-r)^2 = 1 -2r + r^2 & \small \blue{\text{Note that }y = 2r} \\ x^2 + \frac 34 y^2 + y & = 1 \\ x^2 + \frac 34 \left(y+\frac 23\right)^2 & = \frac 43 \\ \frac {x^2}{\frac 43} + \frac {\left(y+\frac 23\right)^2}{\frac {16}9} & = 1 \end{aligned}

Therefore the locus is part of an ellipse with center at ( 0 , 2 3 ) \left(0, -\frac 23\right) , minor-axis of length 2 3 \frac 2{\sqrt 3} , and major-axis 4 3 \frac 43 . Since it is an elliptical segment, we can find its area with geometrical means without using integration. The area under the locus is a 12 0 120^\circ -elliptical segment and its area is given by:

A e = a b ( π b 2 3 b 2 sin 12 0 2 ) = 3 2 ( 16 27 π 4 3 9 ) = 8 3 π 18 27 A_e = \frac ab\left(\frac {\pi b^2}3 - \frac {b^2\sin 120^\circ}2 \right) = \frac {\sqrt 3}2 \left(\frac {16}{27}\pi - \frac {4\sqrt 3}9 \right) = \frac {8\sqrt 3 \pi -18}{27}

Therefore the required answer is 8 + 3 + 18 + 27 = 56 8+3+18+27 = \boxed{56} .

Well well well, thank you again maestro !

Valentin Duringer - 2 months, 4 weeks ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...