Dynamic Geometry: P74

Geometry Level 4

The diagram shows a blue angle which measures tan 1 ( 336 527 ) \tan^{-1} \left(\dfrac{336}{527}\right) . Four circles (green, cyan, red and yellow) tangent to each other and internally tangent to the angle are moving freely. Using the tangency points between the yellow circle and the three other circles, we draw a black triangle. When the area of the black triangle is equal to 8 8077 \dfrac{8}{8077} , the area of the cyan circle can be expressed as p q π \dfrac{p}{q}\pi , where p p and q q are coprime positive integers. Find p + q p+q .


The answer is 89465.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Mar 15, 2021

Let the angle measuring tan 1 336 527 \tan^{-1} \dfrac {336}{527} be P O Q = θ \angle POQ = \theta , the centers of the green, red, cyan, and yellow circles be A A , B B , C C , and D D ; and their radii r 0 r_0 , r 1 r_1 , r 2 r_2 , and r 3 r_3 respectively, and A M AM and B N BN be perpendicular to O Q OQ .

We note that B O N = θ 2 \angle BON = \dfrac \theta 2 and tan θ 2 = 1 cos θ sin θ = 7 24 \tan \dfrac \theta 2 = \dfrac {1-\cos \theta}{\sin \theta} = \dfrac 7{24} . This means that similar A O M \triangle AOM and B O N \triangle BON are 7 7 - 24 24 - 25 25 triangles. By similar triangles:

B N A M = O B O A = O A + A B O A r 1 r 0 = 25 7 r 0 + r 0 + r 1 25 7 r 0 25 r 1 = 32 r 0 + 7 r 1 r 1 = 16 9 r 0 \begin{aligned} \frac {BN}{AM} & = \frac {OB}{OA} = \frac {OA+AB}{OA} \\ \frac {r_1}{r_0} & = \frac {\frac {25}7r_0+r_0+r_1}{\frac {25}7r_0} \\ 25r_1 & = 32 r_0 + 7 r_1 \\ \implies r_1 & = \frac {16}9r_0 \end{aligned}

We can find r 2 r_2 using the equation, 1 r 2 = 1 r 0 + 1 r 1 = 1 r 0 + 3 4 r 0 r 2 = 16 49 r 0 \dfrac 1{\sqrt{r_2}} = \dfrac 1{\sqrt{r_0}} + \dfrac 1{\sqrt{r_1}} = \dfrac 1{\sqrt{r_0}} + \dfrac 3{4\sqrt{r_0}} \implies r_2 = \dfrac {16}{49} r_0 . And r 3 r_3 by Descartes' theorem ,

1 r 3 = 1 r 0 + 1 r 1 + 1 r 2 + 2 1 r 0 r 1 + 1 r 2 r 3 + 1 r 2 r 0 r 3 = 4 37 \begin{aligned} \frac 1{r_3} & = \frac 1{r_0} + \frac 1{r_1} + \frac 1{r_2} + 2 \sqrt{\frac 1{r_0r_1}+\frac 1{r_2r_3}+ \frac 1{r_2r_0}} \\ \implies r_3 & = \frac 4{37} \end{aligned}

Let the triangle the yellow circle circumscribed be E F G EFG . We can first find the areas of D E F \triangle DEF , D F G \triangle DFG , and D G E \triangle DGE and then sum them up. We find that: the areas of D A B \triangle DAB and D E F \triangle DEF are given by:

{ [ D A B ] = ( r 0 + r 3 ) ( r 1 + r 3 ) sin A D B 2 [ D E F ] = r 3 2 sin A D B 2 [ D E F ] = r 3 2 ( r 0 + r 3 ) ( r 1 + r 3 ) [ D A B ] By Heron’s formula = r 3 2 ( r 0 + r 1 + r 3 ) r 0 r 1 r 3 ( r 0 + r 3 ) ( r 1 + r 3 ) \begin{cases} [DAB] & = \dfrac {(r_0+r_3)(r_1+r_3)\sin \angle ADB}2 \\ [DEF] & = \dfrac {r_3^2\sin \angle ADB}2 \end{cases} \\ \begin{aligned} \implies [DEF] & = \frac {r_3^2}{(r_0+r_3)(r_1+r_3)}\blue{[DAB]} & \small \blue{\text{By Heron's formula}} \\ & = \frac {r_3^2\blue{\sqrt{(r_0+r_1+r_3)r_0r_1r_3}}}{(r_0+r_3)(r_1+r_3)} \end{aligned}

Similarly for [ D F G ] [DFG] and [ D G E ] [DGE] , then

[ E F G ] = [ D E F ] + [ D F G ] + [ D G E ] = r 3 2 ( r 0 + r 1 + r 3 ) r 0 r 1 r 3 ( r 0 + r 3 ) ( r 1 + r 3 ) + r 3 2 ( r 1 + r 2 + r 3 ) r 1 r 2 r 3 ( r 1 + r 3 ) ( r 2 + r 3 ) + r 3 2 ( r 0 + r 2 + r 3 ) r 0 r 2 r 3 ( r 0 + r 3 ) ( r 2 + r 3 ) = 992 238169 r 0 2 + 6080 1144373 r 0 2 + 1632 298849 r 0 2 = 18944 1268089 r 0 2 When [ E F G ] = 8 8077 r 0 2 = 8 8077 × 1268089 18944 = 157 2368 \begin{aligned} [EFG] & = [DEF] + [DFG] + [DGE] \\ & = \frac {r_3^2\sqrt{(r_0+r_1+r_3)r_0r_1r_3}}{(r_0+r_3)(r_1+r_3)} + \frac {r_3^2\sqrt{(r_1+r_2+r_3)r_1r_2r_3}}{(r_1+r_3)(r_2+r_3)} + \frac {r_3^2\sqrt{(r_0+r_2+r_3)r_0r_2r_3}}{(r_0+r_3)(r_2+r_3)} \\ & = \frac {992}{238169}r_0^2 + \frac {6080}{1144373}r_0^2 + \frac {1632}{298849}r_0^2 = \frac {18944}{1268089}r_0^2 \quad \quad \small \blue{\text{When }[EFG] = \frac 8{8077}} \\ \implies r_0^2 & = \frac 8{8077} \times \frac {1268089}{18944} = \frac {157}{2368} \end{aligned}

And the area of the cyan circle A c y a n = π r 2 2 = ( 16 49 ) 2 × 157 2368 π = 628 88837 π A_{\rm cyan} = \pi r_2^2 = \left(\dfrac {16}{49} \right)^2 \times \dfrac {157}{2368} \pi = \dfrac {628}{88837} \pi . Therefore p + q = 89465 p+q = \boxed{89465} .


Reference: Heron's formula

Great work !

Valentin Duringer - 2 months, 4 weeks ago

@Valentin Duringer I have seen that arctan(336/527) almost in every question with the diagram above or similar diagram , is there something special about that angle ?

Omek K - 2 months, 3 weeks ago

No, nothing special, I'm just using the same templates but I ask a different question !

Valentin Duringer - 2 months, 3 weeks ago

It is special because tan θ = 336 527 tan θ 2 = 7 24 tan θ 4 = 1 7 \tan \theta = \dfrac {336}{527} \implies \tan \dfrac \theta 2 = \dfrac 7{24} \implies \tan \dfrac \theta 4 = \dfrac 17 . It is chosen so that we get a rational number as solution. Since tan θ 2 = 1 cos θ sin θ \tan \dfrac \theta 2 = \dfrac {1-\cos \theta}{\sin \theta} , to get rational tan θ 2 \tan \dfrac \theta 2 , both sin θ \sin \theta and cos θ \cos \theta must also be rational. For all sin θ \sin \theta , c o s θ cos \theta , and tan θ \tan \theta to be rational, it means that the right triangle has Pythagorean triple as side lengths. In this case they are 336-527-625 and 7-24-25.

Chew-Seong Cheong - 2 months, 3 weeks ago

Log in to reply

Well, I could have chosen any Pythagorean triple ;)

Valentin Duringer - 2 months, 3 weeks ago

Log in to reply

But this is two levels. tan θ = 3 4 tan θ 2 = 1 3 tan θ 4 = 10 3 \tan \theta = \frac 34 \implies \tan \frac \theta 2 = \frac 13 \implies \tan \frac \theta 4 = \sqrt{10}-3 only one level.

Chew-Seong Cheong - 2 months, 3 weeks ago

Log in to reply

@Chew-Seong Cheong I see, thank you for your help

Omek K - 2 months, 3 weeks ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...