Easy Calculus 3 : Imaginary

Calculus Level 3

0 2 i x d x \large \int_0^2 ~ i^x ~ \mathrm{d}x

If value of the expression above is of the form A i π \dfrac{A i}{\pi} , find the value of A A .

Notation: i = 1 i = \sqrt[]{-1} denotes the imaginary unit .

2 4 1 3

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Viki Zeta
Sep 30, 2016

I = i x d x I = i x ln ( i ) ; since a x = a x ln ( a ) ___________________________________________________ e i x = cos ( x ) + i sin ( x ) e i π 2 = cos ( π 2 ) + i sin ( π 2 ) e i π 2 = 0 + i ( 1 ) = i ln ( e i π 2 ) = ln ( i ) ln ( i ) = i π 2 ln ( e ) = i π 2 __________________________________________________ I = i x i π 2 = 2 i x i π = 2 i x π 1 i = 2 i x π ( i ) I = 2 i x + 1 π Now, 0 2 i x d x = 2 i x + 1 π 0 2 = 2 i 2 + 1 π ( 2 i 0 + 1 π ) = 2 i 3 π ( 2 i 1 π ) = 2 i π + 2 i π = 4 i π = 4 i π A = 4 \displaystyle I = \int i^x~ dx \\ \displaystyle I = \dfrac{i^x}{\ln(i)} \text{; since } \int a^x = \dfrac{a^x}{\ln(a)}\\ \displaystyle \text{\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_} \\ \displaystyle e^{ix} = \cos(x) + i\sin(x) \\ \displaystyle e^{i\dfrac{\pi}{2}} = \cos(\dfrac{\pi}{2}) + i\sin(\dfrac{\pi}{2}) \\ \displaystyle e^{i\dfrac{\pi}{2}} = 0 + i ( 1) = i \\ \displaystyle \ln(e^{i\dfrac{\pi}{2}}) = \ln(i) \\ \displaystyle \ln(i) = i\dfrac{\pi}{2} ~ \ln(e) = i\dfrac{\pi}{2} \\ \displaystyle \text{\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_} \\ \displaystyle I = \dfrac{i^x}{i\dfrac{\pi}{2}} = \dfrac{2i^x}{i\pi} = \dfrac{2i^x}{\pi} \cdot \dfrac{1}{i} = \dfrac{2i^x}{\pi} \cdot (-i) \\ \displaystyle I = -\dfrac{2i^{x+1}}{\pi} \\ \displaystyle \text{Now, } \\ \displaystyle \int_0^2 i^x~ dx = -\dfrac{2i^{x+1}}{\pi} ~\Big|^2_0 \\ \displaystyle = -\dfrac{2i^{2+1}}{\pi} - ( -\dfrac{2i^{0+1}}{\pi} ) \\ \displaystyle = -\dfrac{2i^{3}}{\pi} - ( -\dfrac{2i^{1}}{\pi} ) \\ \displaystyle = \dfrac{2i}{\pi} + \dfrac{2i}{\pi} \\ \displaystyle = \dfrac{4i}{\pi} \\ \displaystyle = 4\dfrac{i}{\pi} \\ \displaystyle \boxed{\therefore A = 4}

Kushal Bose
Oct 1, 2016

i = c o s ( π / 2 ) + i s i n ( π / 2 ) i=cos(\pi/2)+ i sin(\pi/2)

So, i x = ( c o s ( π / 2 ) + i s i n ( π / 2 ) ) x i^x=(cos(\pi/2)+ i sin(\pi/2))^x

Applying De-Moivre's Theorem:

i x = c o s ( π x / 2 ) + i s i n ( π x / 2 ) i^x=cos(\pi x/2 ) + i sin(\pi x/2)

Now it is to integrate the answer is 4 i / π 4 i/\pi

Chew-Seong Cheong
Sep 30, 2016

Relevant wiki: Euler's Formula

I = 0 2 i x d x By Euler’s formula: e i θ = cos θ + i sin θ = 0 2 e π x 2 i d x = 2 e π x 2 i π i 0 2 = 2 π i ( e π i e 0 ) = 2 π i ( 1 1 ) = 4 i π \begin{aligned} I & = \int_0^2 i^x \ dx & \small \color{#3D99F6}{\text{By Euler's formula: }e^{i\theta}=\cos \theta + i \sin \theta} \\ & = \int_0^2 e^{\frac {\pi x}2 i} \ dx \\ & = \frac {2 e^{\frac {\pi x}2}i}{\pi i} \bigg|_0^2 \\ & = \frac 2{\pi i} \left(e^{\pi i} - e^0 \right) \\ & = \frac 2{\pi i} \left(-1 - 1 \right) \\ & = \frac {4i}\pi \end{aligned}

A = 4 \implies A = \boxed{4}

Interested in knowing how i x = e π x i 2 i^x = e^{\dfrac{\pi xi}{2}}

Viki Zeta - 4 years, 8 months ago

Log in to reply

You need to space \pi, x and i. It is the most beautiful equation.

e i π = 1 \large e^{i\pi} = -1

Chew-Seong Cheong - 4 years, 8 months ago

Log in to reply

Can you explain? Not sure from where you got i x i^x .

Viki Zeta - 4 years, 8 months ago

Log in to reply

@Viki Zeta Can you read the wiki I have attached.

Chew-Seong Cheong - 4 years, 8 months ago

Log in to reply

@Chew-Seong Cheong All I predict is

e i π 2 = i e i π x 2 = i x e^{i\frac{\pi}{2}} = i \\ e^{\dfrac{i \pi x}{2}} = i^x

So, is that what you used?

Viki Zeta - 4 years, 8 months ago

Log in to reply

@Viki Zeta The general equation is: e i θ = cos θ + i sin θ e^{i\theta} = \cos \theta + i \sin \theta . You can prove this by differentiate both sides and find that LHS \equiv RHS. e i π 2 = cos π 2 + i sin π 2 = 0 + i e^{i\frac \pi 2} = \cos \frac \pi 2 + i \sin \frac \pi 2 = 0 + i , e i π = cos π + i sin π = 1 + i 0 e^{i \pi} = \cos \pi + i \sin \pi = -1 + i0 .

Chew-Seong Cheong - 4 years, 8 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...