Progression

Calculus Level 3

lim n 3 ( 2 3 1 2 3 + 1 × 3 3 1 3 3 + 1 × 4 3 1 4 3 + 1 × × n 3 1 n 3 + 1 ) = ? \large \lim_{n\to \infty} 3 \left( \dfrac{2^3-1}{2^3+1} \times \dfrac{3^3-1}{3^3+1} \times \dfrac{4^3 - 1}{4^3 + 1} \times \cdots \times \dfrac{n^3-1}{n^3+1} \right) = \, ?


The answer is 2.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Hasan Kassim
Mar 1, 2015

lim n 3 a n \displaystyle \lim_{n\to \infty} 3a_n

= 3 n = 2 n 3 1 n 3 + 1 \displaystyle = 3\prod_{n=2}^{\infty} \frac{n^3-1}{n^3+1}

= 3 n = 2 ( n 1 ) ( n 2 + n + 1 ) ( n + 1 ) ( n 2 n + 1 ) \displaystyle= 3\prod_{n=2}^{\infty} \frac{(n-1)(n^2+n+1)}{(n+1)(n^2-n+1)}

= 3 n = 2 ( n 1 ) n = 2 ( n + 1 ) n = 2 ( n ( n + 1 ) + 1 ) n = 2 ( ( n 1 ) ( n ) + 1 ) \displaystyle =3\frac{\prod_{n=2}^{\infty} (n-1) }{\prod_{n=2}^{\infty} (n+1) } \frac{\prod_{n=2}^{\infty} (n(n+1)+1)}{\prod_{n=2}^{\infty} ((n-1)(n)+1) }

= 3 n = 0 ( n + 1 ) n = 2 ( n + 1 ) n = 3 ( ( n 1 ) ( n ) + 1 ) n = 2 ( ( n 1 ) ( n ) + 1 ) \displaystyle= 3\frac{\prod_{n=0}^{\infty} (n+1) }{\prod_{n=2}^{\infty} (n+1) } \frac{\prod_{n=3}^{\infty} ((n-1)(n)+1)}{\prod_{n=2}^{\infty} ((n-1)(n)+1) }

= 3 ( 0 + 1 ) ( 1 + 1 ) 1 ( 2 1 ) ( 2 ) + 1 = 2 \displaystyle = 3(0+1)(1+1) \frac{1}{(2-1)(2) +1 } = \boxed{2}

nice solution , upvoted

Utkarsh Bansal - 6 years, 3 months ago

same method

Shanthan Kumar - 6 years, 3 months ago

Sir I didn't understand last but 1 step, how did n=2 be n=0 and n=3?? Though I understood it means the same. But how will I know when to use which number? Thank You

Neeraj Snappy - 6 years, 3 months ago

Log in to reply

It is called shifting, in which I decreased the limits of the product to increase the variable in the term . I did it so that it will resemble the term in the denominator and hence simplify.

Hasan Kassim - 6 years, 3 months ago

Log in to reply

can i find it in wiki pages? If so in which page? If not then where can I find it??

Neeraj Snappy - 6 years, 3 months ago

Log in to reply

@Neeraj Snappy This link may help.

Hasan Kassim - 6 years, 3 months ago

very nice , upvoted

Anh Vũ - 6 years, 3 months ago

Elegant solution

Ujjwal Mani Tripathi - 5 years, 6 months ago

let's consider the last three terms

( n 1 ) 3 1 ( n 1 ) 3 + 1 ( n ) 3 1 ( n ) 3 + 1 ( n + 1 ) 3 1 ( n + 1 ) 3 + 1 \frac{(n-1)^{3}-1}{(n-1)^{3}+1} \cdot\frac{(n)^{3}-1}{(n)^{3}+1}\cdot\frac{(n+1)^{3}-1}{(n+1)^{3}+1}

( n 2 ) ( n 2 n + 1 ) n ( n 2 3 n + 3 ) ( n 1 ) ( n 2 + n + 1 ) ( n + 1 ) ( n 2 + n + 1 ) n ( n 2 + 3 n + 3 ) ( n + 2 ) ( n 2 + n + 1 ) \frac{(n-2)(n^{2}-n+1)}{n(n^{2}-3n+3)}\cdot\frac{(n-1)(n^{2}+n+1)}{(n+1)(n^{2}+n+1)}\cdot\frac{n(n^{2}+3n+3)}{(n+2)(n^{2}+n+1)}

so you can see that we can eliminate some terms and if we keep continuing we'll get

2 3 n 2 + 3 n + 3 ( n + 1 ) ( n + 2 ) \frac{2}{3}\cdot\frac{n^{2}+3n+3}{(n+1)(n+2)}

and in the limit that lim n > a n = 2 3 \lim_{n-> \infty} a_{n}=\frac{2}{3}

then lim n > 3 a n = 2 \lim_{n-> \infty} 3a_{n}=2

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...