Egyptian Fraction?

Let x , y , x, \space y, and z z be positive real integer, with 1000 < x < y < z < 2000 1000< x <y <z<2000 and satisfy the condition 1 2 + 1 3 + 1 7 + 1 x + 1 y + 1 z + 1 45 = 1 \dfrac{1}{2} + \dfrac{1}{3} + \dfrac{1}{7} + \dfrac{1}{x} + \dfrac{1}{y} + \dfrac{1}{z} + \dfrac{1}{45} = 1 .

Given further that x x is divisible by 42, find x + y + z x+y+z .


The answer is 5678.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Fidel Simanjuntak
Apr 23, 2017

First, notice that 1 2 + 1 3 + 1 7 + 1 42 = 1 \dfrac{1}{2} + \dfrac{1}{3} + \dfrac{1}{7} + \dfrac{1}{42} = 1

1 2 + 1 3 + 1 7 + 1 42 1 43 + 1 43 1 44 + 1 44 1 45 + 1 45 = 1 1 2 + 1 3 + 1 7 + ( 1 42 1 43 ) + ( 1 43 1 44 ) + ( 1 44 1 45 ) + 1 45 = 1 1 2 + 1 3 + 1 7 + 1 42 × 43 + 1 43 × 44 + 1 44 × 45 + 1 45 = 1 1 2 + 1 3 + 1 7 + 1 1806 + 1 1892 + 1 1980 + 1 45 = 1 \begin{aligned} \dfrac{1}{2} + \dfrac{1}{3} + \dfrac{1}{7} + \dfrac{1}{42} - \dfrac{1}{43} + \dfrac{1}{43} - \dfrac{1}{44} + \dfrac{1}{44} - \dfrac{1}{45} + \dfrac{1}{45} & =1 \\ \dfrac{1}{2} + \dfrac{1}{3} + \dfrac{1}{7} + \left( \dfrac{1}{42} - \dfrac{1}{43}\right) + \left( \dfrac{1}{43} - \dfrac{1}{44}\right) + \left( \dfrac{1}{44} - \dfrac{1}{45} \right) + \dfrac{1}{45} & =1 \\ \dfrac{1}{2} + \dfrac{1}{3} + \dfrac{1}{7} + \dfrac{1}{42 \times 43} + \dfrac{1}{43 \times 44} + \dfrac{1}{44 \times 45} + \dfrac{1}{45} & =1 \\ \dfrac{1}{2} + \dfrac{1}{3} + \dfrac{1}{7} + \dfrac{1}{1806} + \dfrac{1}{1892} + \dfrac{1}{1980} + \dfrac{1}{45} & =1 \end{aligned}

Hence, ( x , y , z ) = ( 1806 , 1892 , 1980 ) (x,y,z) = (1806,1892,1980) ; then the answer is 5678 5678

This shows that 5678 is a possible answer. How do you know that's the unique answer?

Calvin Lin Staff - 4 years, 1 month ago

Log in to reply

I don't know.. I was just using the identity 1 a 1 a + 1 = 1 a ( a + 1 ) \dfrac{1}{a} - \dfrac{1}{a+1} = \dfrac{1}{a(a+1)} to find x , y , z x,y,z .

Fidel Simanjuntak - 4 years, 1 month ago

Log in to reply

If you look at the reports, you will see that there are multiple integer solutions to 1 x + 1 y + 1 z = 1 1 2 1 3 1 7 1 45 \frac{1}{x} + \frac{1}{y} + \frac{1}{z} = 1 - \frac{1}{2} - \frac{1}{3} - \frac{1}{7} - \frac{ 1}{45} .

Thus, we have to be careful with such problems. Simply finding one possible solution doesn't mean that's the only solution.

Calvin Lin Staff - 4 years, 1 month ago

Log in to reply

@Calvin Lin I see what you mean. Thanks!

Fidel Simanjuntak - 4 years, 1 month ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...