Encouraged by Abhineet Nayyar

Calculus Level 5

0 ( sin x x ) 5 d x \large \int_0^\infty \left( \frac{\sin x}x \right)^5 \, dx

If the integral above is equal to a b π \dfrac ab \pi for coprime positive integers a a and b b , find the value of a + b + 1 a + b + 1 .


The answer is 500.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Kishore S. Shenoy
Oct 26, 2015

First, some introduction...

  • Dirichlet Integral: 0 sin x x d x = π 2 \displaystyle\int_0^\infty \dfrac{\sin x}x \,dx= \dfrac{\pi}2

  • 0 sin 3 x x d x = π 4 \displaystyle \int_0^\infty \dfrac{\sin^3x}xdx=\dfrac\pi4 :

We know sin 3 x = 3 sin x sin 3 x 4 \sin^3x = \dfrac{3\sin x -\sin3x}4 0 sin 3 x x d x = 1 4 [ 0 3 sin x x d x 0 sin 3 x x d x ] = 3 π 8 1 4 0 sin y y d y = π 4 \begin{aligned} \int_0^\infty \dfrac{\sin^3x}xdx &=\dfrac14\left[ \int_0^\infty\dfrac{3\sin x}xdx-\int_0^\infty\dfrac{\sin3x}xdx\right]\\&=\dfrac{3\pi}8-\dfrac14\int_0^\infty \dfrac{\sin y}ydy\\&=\dfrac\pi4\end{aligned}


  • 0 sin 5 x x d x = 3 π 16 \displaystyle \int_0^\infty \dfrac{\sin^5x}xdx=\dfrac{3\pi}{16}

We know sin 5 x = sin 5 x + 20 sin 3 x 5 sin x 16 \sin^5x=\dfrac{\sin 5x +20\sin^3x-5\sin x}{16} 0 sin 5 x x d x = 1 16 [ 0 sin 5 x x d x + 20 0 sin 3 x x d x 5 0 sin x x d x ] = 1 16 [ π 2 + 5 π 5 π 2 ] = 3 π 16 \begin{aligned}\int_0^\infty\dfrac{\sin^5x}xdx&=\dfrac1{16}\left[\int_0^\infty \dfrac{\sin5x}xdx+20\int_0^\infty\dfrac{\sin^3x}xdx - 5\int_0^\infty\dfrac{\sin x}xdx\right]\\&=\dfrac1{16}\left[\dfrac \pi 2 + 5\pi - \dfrac{5\pi}2\right]\\&=\dfrac{3\pi}{16}\end{aligned}


  • Since the integrations by parts is from 0 0\to\infty we can ignore the term u v uv in u d v = u v v d u \int u\,dv=uv-\int v\,du

So, we can use the following here(not everywhere). You can use this here because lim x v ( x ) d x = lim x 1 x n = 0 , for some n > 0 \lim_{x\to\infty}\int v(x)dx = \lim_{x\to\infty}\dfrac 1{x^n}=0 \text{, for some }n > 0 and u ( 0 ) = sin 0 = 0 u(0)=\sin 0=0 So, 0 u ( x ) v ( x ) d x = 0 ( u ( x ) v ( x ) d x ) d x \int_0^\infty u(x)v(x)dx = -\int_0^\infty \left(u'(x)\int v(x)dx\right)dx


  • 0 s i n 3 x x 3 d x = 3 π 8 \displaystyle\int_0^\infty \dfrac{sin^3x}{x^3}dx = \dfrac{3\pi}8

0 sin 3 x x 3 d x = 3 2 0 sin 2 x cos x x 2 d x = 3 2 0 2 sin x cos 2 x s i n 3 x x d x = 3 2 [ 2 0 sin x x d x 3 0 sin 3 x x d x ] = 3 2 ( π 3 π 4 ) = 3 π 8 \displaystyle\begin{aligned}\int_0^\infty \dfrac{\sin^3x}{x^3}dx&=\dfrac32\int_0^\infty\dfrac{\sin^2x\cos x}{x^2}dx\\&=\dfrac32\int_0^\infty\dfrac{2\sin x\cos^2x-sin^3x}xdx\\&=\dfrac32\left[2\int_0^\infty\dfrac{\sin x}xdx-3\int_0^\infty\dfrac{\sin^3x}xdx\right]\\&=\dfrac32\left(\pi-\dfrac{3\pi}4\right)\\&=\dfrac{3\pi}8\end{aligned}


Let's do Parts! 0 ( sin x x ) 5 d x = 5 4 0 sin 4 x cos x x 4 d x = 5 12 0 4 sin 3 x cos 2 x sin 5 x x 3 d x \begin{aligned} \int_0^\infty \left( \frac{\sin x}x \right)^5 \, dx &=\dfrac 54 \int_0^\infty \dfrac{\sin^4x\cos x}{x^4}dx\\&=\dfrac5{12} \int_0^\infty \dfrac{4\sin^3x\cos^2x-\sin^5x}{x^3}dx\end{aligned} Using cos 2 x = 1 sin 2 x \cos^2x=1-\sin^2x 0 ( sin x x ) 5 d x = 5 12 [ 0 4 sin 3 x x 3 d x 0 5 sin 5 x 3 d x ] \begin{aligned} \int_0^\infty \left( \frac{\sin x}x \right)^5 \, dx&=\dfrac5{12}\left[ \int_0^\infty \dfrac{4\sin^3x}{x^3}dx- \int_0^\infty \dfrac{5\sin^5}{x^3}dx\right]\end{aligned} Using 0 s i n 3 x x 3 d x = 3 π 8 \displaystyle\int_0^\infty \dfrac{sin^3x}{x^3}dx = \dfrac{3\pi}8 , 0 ( sin x x ) 5 d x = 5 π 8 25 12 0 sin 5 x x 3 d x \begin{aligned} \int_0^\infty \left( \frac{\sin x}x \right)^5 \, dx&=\dfrac{5\pi}8-\dfrac{25}{12} \int_0^\infty \dfrac{\sin^5x}{x^3}dx\end{aligned} Repeating the Integration By Parts again, 0 ( sin x x ) 5 d x = 5 π 8 125 24 [ 0 4 sin 3 x x d x 0 5 sin 5 x x d x ] \begin{aligned} \int_0^\infty \left( \frac{\sin x}x \right)^5 \, dx&=\dfrac{5\pi}{8}-\dfrac{125}{24}\left[ \int_0^\infty \dfrac{4\sin^3x}xdx- \int_0^\infty \dfrac{5\sin^5x}xdx\right]\end{aligned}

Using 0 sin 3 x x d x = π 4 \displaystyle \int_0^\infty \dfrac{\sin^3x}xdx=\dfrac\pi4 and 0 sin 5 x x d x = 3 π 16 \displaystyle \int_0^\infty \dfrac{\sin^5x}xdx=\dfrac{3\pi}{16}

So, 0 4 sin 3 x x d x 0 5 sin 5 x x d x = π 15 π 16 = π 16 \int_0^\infty \dfrac{4\sin^3x}xdx- \int_0^\infty \dfrac{5\sin^5x}xdx =\pi-\dfrac{15\pi}{16}= \dfrac{\pi}{16}

0 ( sin x x ) 5 d x = 5 π 8 125 π 24 × 16 = 115 π 384 \begin{aligned} \Rightarrow\int_0^\infty \left( \frac{\sin x}x \right)^5 \, dx&=\dfrac{5\pi}8-\dfrac{125\pi}{24\times16}\\&=\dfrac{115\pi}{384}\end{aligned}

0 ( sin x x ) 5 d x = 115 π 384 \displaystyle\Huge \therefore\int_0^\infty \left( \frac{\sin x}x \right)^5 dx =\boxed{\dfrac{115\pi}{384}}

So, a + b + 1 = 115 + 384 + 1 = 500 a+b+1=115+384+1=\boxed{500}

Moderator note:

Good observation about the integration by parts. You should be clearer about what u , v u, v functions you are using, to explain what "works here (not everywhere)" means.

When evaluating similar equations, it's typically better to find a general method, instead of methods that work for individual equations. As an example, it is better to use sin 5 x = 1 16 ( sin 5 x 5 sin 3 x + 10 sin x ) \sin ^5 x = \frac{1}{16} ( \sin 5x - 5 \sin 3x + 10 \sin x ) , which gives us an easy way to evaluate sin 5 x x \int \frac{ \sin ^5 x } { x} without knowing what sin 3 x x \int \frac{ \sin^3 x } { x} is.

No need of "boring" IBP, I believe. IBP becomes very "boring" as you go forward. All your lemmas can be proved using Feynman's way as well.

Kartik Sharma - 5 years, 7 months ago

Log in to reply

I don't know that. You can do it using contours too!

Kishore S. Shenoy - 5 years, 7 months ago

Log in to reply

Yeah, I know. I am going to post a solution using that or some other better way in near future.

PS: Feynman's way is just "Differentiation under integral sign"

Kartik Sharma - 5 years, 7 months ago

@Calvin Lin Sir, thank you for the feedback. Next time I'll make sure I use something similar...

Kishore S. Shenoy - 5 years, 7 months ago
Michael Mendrin
Oct 28, 2015

First, for general indefinite integral

S i n ( a x ) x 5 d x \displaystyle \int { \dfrac { Sin\left( ax \right) }{ { x }^{ 5 } } dx }

We use the recursive relations

S i n ( a x ) x n d x = S i n ( a x ) ( n 1 ) x n 1 + a ( n 1 ) C o s ( a x ) x n 1 d x \displaystyle \int { \dfrac { Sin\left( ax \right) }{ { x }^{ n } } dx } =-\dfrac { Sin\left( ax \right) }{ \left( n-1 \right) { x }^{ n-1 } } +\dfrac { a }{ \left( n-1 \right) }\displaystyle \int { \dfrac { Cos\left( ax \right) }{ { x }^{ n-1 } } dx }

C o s ( a x ) x n d x = C o s ( a x ) ( n 1 ) x n 1 a ( n 1 ) S i n ( a x ) x n 1 d x \displaystyle \int { \dfrac { Cos\left( ax \right) }{ { x }^{ n } } dx } =-\dfrac { Cos\left( ax \right) }{ \left( n-1 \right) { x }^{ n-1 } } -\dfrac { a }{ \left( n-1 \right) }\displaystyle \int { \dfrac { Sin\left( ax \right) }{ { x }^{ n-1 } } dx }

to derive the following relation

S i n ( a x ) x 5 d x = 1 24 x 4 ( a 3 x 3 C o s ( a x ) + b 2 x 2 S i n ( a x ) 2 b x C o s ( a x ) 6 S i n ( a x ) ) + b 4 24 S i n ( a x ) x d x \displaystyle\int { \dfrac { Sin\left( ax \right) }{ { x }^{ 5 } } dx } =\dfrac { 1 }{ 24{ x }^{ 4 } } \left( { a }^{ 3 }{ x }^{ 3 }Cos\left( ax \right) +{ b }^{ 2 }{ x }^{ 2 }Sin\left( ax \right) -2bxCos\left( ax \right) -6Sin\left( ax \right) \right) +\dfrac {{ b }^{ 4 }}{24}\displaystyle\int { \dfrac { Sin\left( ax \right) }{ x } dx }

Now, using trigonometric identities, we have the following relation

( S i n ( x ) ) 5 = 1 16 ( 10 S i n ( x ) 5 S i n ( 3 x ) + S i n ( 5 x ) ) { \left( Sin\left( x \right) \right) }^{ 5 }=\dfrac { 1 }{ 16 } (10Sin\left( x \right) -5Sin\left( 3x \right) +Sin\left( 5x \right) )

so that, using both relations, we have

0 ( S i n ( x ) x ) 5 d x = L i m i t f ( x ) , x L i m i t f ( x ) , x 0 + 115 192 0 S i n ( x ) x d x \displaystyle \int _{ 0 }^{ \infty }{ { \left( \dfrac { Sin\left( x \right) }{ x } \right) }^{ 5 } }dx =Limit\left| f\left( x \right) ,x\rightarrow\infty \right| -Limit\left| f\left( x \right) ,x\rightarrow0 \right| +\dfrac { 115 }{ 192 }\displaystyle \int _{ 0 }^{ \infty }{ \dfrac { Sin\left( x \right) }{ x } } dx

where f ( x ) f(x) is a sum of terms of the form

b S i n ( a x ) c x n o r b C o s ( a x ) c x n \dfrac { bSin\left( ax \right) }{ c{ x }^{ n } } \quad or\quad \dfrac { bCos\left( ax \right) }{ c{ x }^{ n } }

where 0 < n < 5 0<n<5 , and a , b , c a, b, c are integers. Using L’Hospital’s rule, all of the terms vanish at either limit, i.e., we have f ( 0 ) = 0 f(0)=0 and f ( ) = 0 f(\infty)=0 , and so we are left with

0 ( S i n ( x ) x ) 5 d x = 115 192 0 S i n ( x ) x d x = 115 π 384 \displaystyle \int _{ 0 }^{ \infty }{ { \left(\dfrac { Sin\left( x \right) }{ x } \right) }^{ 5 } }dx =\dfrac { 115 }{ 192 }\displaystyle \int _{ 0 }^{ \infty }{\dfrac { Sin\left( x \right) }{ x } } dx=\dfrac { 115\pi }{ 384 }

Note that with this approach, which can be generalized for other n n , we really only need to pay attention to the coefficients of the Dirichlet Integral function and ignore the rest, keeping in mind the following detail

0 S i n ( a x ) x d x = 0 S i n ( x ) x d x = π 2 \displaystyle \int _{ 0 }^{ \infty }{ \dfrac { Sin(ax) }{ x } dx } =\displaystyle \int _{ 0 }^{ \infty }{ \dfrac { Sin(x) }{ x } } dx=\dfrac { \pi }{ 2 }

.
Edit : Using the following trigonometric identity, for odd n n , for those coefficients

( S i n ( x ) ) n = 2 2 n k = 0 n 1 2 ( ( 1 ) ( n 1 2 k ) n ! k ! ( n k ) ! S i n ( ( n 2 k ) x ) ) { \left( Sin(x) \right) }^{ n }=\dfrac { 2 }{ { 2 }^{ n } }\displaystyle \sum _{ k=0 }^{ \frac { n-1 }{ 2 } }{ \left( { \left( -1 \right) }^{ \left( \frac { n-1 }{ 2 } -k \right) }\dfrac { n! }{ k!\left( n-k \right) ! } Sin\left( \left( n-2k \right) x \right) \right) }

and using the approach outlined above for n = 5 n=5 , this works out to, for odd n n

0 ( S i n ( x ) x ) n = π 2 n ( n 1 ) ! k = 0 n 1 2 ( ( 1 ) k n ! k ! ( n k ) ! ( n 2 k ) n 1 ) \displaystyle \int _{ 0 }^{ \infty }{ { \left( \dfrac { Sin(x) }{ x } \right) }^{ n } } =\dfrac { \pi }{ { 2 }^{ n }\left( n-1 \right) ! } \displaystyle \sum _{ k=0 }^{ \frac { n-1 }{ 2 } }{ \left( { \left( -1 \right) }^{ k }\dfrac { n! }{ k!\left( n-k \right) ! } { \left( n-2k \right) }^{ n-1 } \right) }

Yes, this does look like Sharma's result, except for the coefficient on the left side of the \sum . The coefficient here is sufficient, no need to employ a power of i i and the S i n e Sine function. And, of course , ( n 1 ) ! = Γ ( n ) (n-1)!=\Gamma(n)

Great! Thanks for the generalization as well.

I have the same idea of IBP's but is slightly long winded.

Pi Han Goh - 5 years, 7 months ago

How do you prove/derive the trigo identity:

( S i n ( x ) ) n = 2 2 n k = 0 n 1 2 ( ( 1 ) ( n 1 2 k ) n ! k ! ( n k ) ! S i n ( ( n 2 k ) x ) ) ? { \left( Sin(x) \right) }^{ n }=\dfrac { 2 }{ { 2 }^{ n } }\displaystyle \sum _{ k=0 }^{ \frac { n-1 }{ 2 } }{ \left( { \left( -1 \right) }^{ \left( \frac { n-1 }{ 2 } -k \right) }\dfrac { n! }{ k!\left( n-k \right) ! } Sin\left( \left( n-2k \right) x \right) \right) } ?

Pi Han Goh - 5 years, 7 months ago

Log in to reply

You can make use of trigonometric functions in exponential form to arrive at this identity. How this can be done should be the subject of a note or a wiki, since the approach is very general, not only for powers, but for multiples, i.e. ( S i n ( x ) ) a (Sin(x))^a and S i n ( a x ) Sin(ax) , for any trigonometric function. I used this method to derive the general expansion of T a n ( a x ) Tan(ax) in here Updating Archimedes

Also, didn't Calvin Lin give a lecture about Chebyshev coefficients , which is a related subject?

For this identity here that we're talking about, I simply looked up a table of trigonometric identities.

Meanwhile, Sharma should fix the coefficient on the left side of the \sum

Michael Mendrin - 5 years, 7 months ago

Log in to reply

Also, didn't Calvin Lin give a lecture about Chebyshev coefficients, which is a related subject?

I don't think I was there. I'm not a moderator that time.

It's still surprising that you've condensed my 3 page long solution into a (about) 1 page solution. Huge appreciation!

Pi Han Goh - 5 years, 7 months ago

Surely better than mine! Nicely explained!

Kartik Sharma - 5 years, 7 months ago

Log in to reply

Kartik, you might be missing the point that your solution suggests how to derive the equation for powers of the Sine function. That's what I find interesting about it.

Michael Mendrin - 5 years, 7 months ago

Log in to reply

Oh, yes. I missed that one.

Kartik Sharma - 5 years, 7 months ago
Kartik Sharma
Oct 28, 2015

I will try to find an expression for the general integral.

0 ( sin x x ) n d x \displaystyle \int_{0}^{\infty}{{\left(\frac{\sin x}{x}\right)}^n \, dx}

First let's consider that n n is odd. Then,

0 ( e i x e i x ) n ( 2 i ) n x n d x \displaystyle \int_{0}^{\infty}{\frac{(e^{ix} - e^{-ix})^n}{(2i)^n x^n} \, dx}

( i 2 ) n 1 0 1 2 i ( 1 e 2 i x ) n d x e i n x x n \displaystyle - {\left(\frac{i}{2}\right)}^{n-1} \int_{0}^{\infty}{\frac{1}{2i} (1-e^{2ix})^n \frac{dx}{e^{inx} x^n}}

( i 2 ) n 1 0 1 2 i k = 0 n ( n k ) ( 1 ) k e ( 2 k n ) i x d x x n \displaystyle - {\left(\frac{i}{2}\right)}^{n-1} \int_{0}^{\infty}{\frac{1}{2i} \sum_{k=0}^{n}{\binom{n}{k}(-1)^k e^{(2k-n)ix}} \frac{dx}{x^n}}

As the first case is for odd n n ,

( i 2 ) n 1 0 1 2 i k = 0 ( n 1 ) / 2 ( n k ) ( 1 ) k ( e ( 2 k n ) i x e ( 2 k n ) i x ) d x x n \displaystyle - {\left(\frac{i}{2}\right)}^{n-1} \int_{0}^{\infty}{\frac{1}{2i} \sum_{k=0}^{(n-1)/2}{\binom{n}{k} (-1)^k (e^{(2k-n)ix} - e^{-(2k -n)ix})} \frac{ dx}{x^n}}

( i 2 ) n 1 0 k = 0 ( n 1 ) / 2 ( n k ) ( 1 ) k sin ( ( n 2 k ) x ) d x x n \displaystyle - {\left(\frac{i}{2}\right)}^{n-1} \int_{0}^{\infty}{\sum_{k=0}^{(n-1)/2}{\binom{n}{k} (-1)^k \sin((n-2k)x)} \frac{dx}{x^n}}

Substitute x = u x = \sqrt{u}

i n 1 2 n 0 k = 0 ( n 1 ) / 2 ( n k ) ( 1 ) k sin ( ( n 2 k ) u ) u u 1 n / 2 1 d u \displaystyle - \frac{i^{n-1}}{2^n} \int_{0}^{\infty}{\sum_{k=0}^{(n-1)/2}{\binom{n}{k} (-1)^k \frac{\sin((n-2k)\sqrt{u})}{\sqrt{u}}} u^{1-n/2 -1} \, du}

Now, we can use Mellin transform and hence Ramanujan Master Theorem.

Here, for the generating function, we'll use sin ( x ) x = i = 0 ( u ) i ( 2 i + 1 ) ! \displaystyle \frac{\sin(\sqrt{x})}{\sqrt{x}} = \sum_{i=0}^{\infty}{\frac{(-u)^i}{(2i+1)!}} . And our generating function would become

α ( u ) = k = 0 ( n 1 ) / 2 ( n k ) ( 1 ) k m = 0 ( n 2 k ) 2 m + 1 Γ ( m + 1 ) Γ ( 2 m + 2 ) ( u ) m m ! \displaystyle \alpha(u) = \sum_{k=0}^{(n-1)/2}{\binom{n}{k}(-1)^k \sum_{m=0}^{\infty}{\frac{(n-2k)^{2m+1}\Gamma(m+1)}{\Gamma(2m+2)} \frac{(-u)^m}{m!}}}

= m = 0 ( Γ ( m + 1 ) Γ ( 2 m + 2 ) k = 0 ( n 1 ) / 2 ( n k ) ( 1 ) k ( n 2 k ) 2 m + 1 ) ( u ) m m ! \displaystyle = \sum_{m=0}^{\infty}{\left(\frac{\Gamma(m+1)}{\Gamma(2m+2)} \sum_{k=0}^{(n-1)/2}{\binom{n}{k} (-1)^k (n-2k)^{2m+1}}\right) \frac{(-u)^m}{m!}}

so that ϕ ( m ) = Γ ( m + 1 ) Γ ( 2 m + 2 ) k = 0 ( n 1 ) / 2 ( n k ) ( 1 ) k ( n 2 k ) 2 m + 1 \displaystyle \phi(m) = \frac{\Gamma(m+1)}{\Gamma(2m+2)} \sum_{k=0}^{(n-1)/2}{\binom{n}{k} (-1)^k (n-2k)^{2m+1}}

Now, using RMT, our integral becomes

= i n 1 2 n Γ ( 2 n 2 ) ϕ ( n 2 2 ) \displaystyle = - \frac{i^{n-1}}{2^n} \Gamma\left(\frac{2-n}{2}\right) \phi\left(\frac{n-2}{2}\right)

= i n 1 2 n Γ ( 2 n 2 ) Γ ( n 2 2 + 1 ) Γ ( n 2 + 2 ) k = 0 ( n 1 ) / 2 ( n k ) ( 1 ) k ( n 2 k ) n 2 + 1 \displaystyle = - \frac{i^{n-1}}{2^n}\Gamma\left(\frac{2-n}{2}\right) \frac{\Gamma\left(\frac{n-2}{2}+1\right)}{\Gamma(n-2+2)} \sum_{k=0}^{(n-1)/2}{\binom{n}{k} (-1)^k (n-2k)^{n-2+1}}

Finally,

0 ( sin x x ) n d x = i n 1 2 n π sin ( π ( 2 n ) 2 ) Γ ( n ) k = 0 ( n 1 ) / 2 ( n k ) ( 1 ) k ( n 2 k ) n 1 , for odd n \displaystyle \int_{0}^{\infty}{{\left(\frac{\sin x}{x}\right)}^n \, dx} = - \frac{i^{n-1}}{2^n}\frac{\pi}{\sin\left(\frac{\pi(2-n)}{2}\right) \Gamma(n)} \sum_{k=0}^{(n-1)/2}{\binom{n}{k} (-1)^k (n-2k)^{n-1}}, \text{for odd n}

Exercise for the reader : Try to extend it for even n n [Hint: Only one more(or less) term will get added to the binomial expansion and rest the same].

Anyways, I will be posting it but it is good to exercise while reading.

Kartik Sharma - 5 years, 7 months ago

Wonderful solution.

Ciara Sean - 5 years, 4 months ago

Thank you. Let me print this solution!

Pi Han Goh - 5 years, 7 months ago

@Pi Han Goh What do you think?

I never wanted to do this, honestly. I was thinking of Contour for days but I failed as I never got the full solution. So, I had to get back to Mellin. BTW, can you do anything as the solutions page of this problem has become very long?

Kartik Sharma - 5 years, 7 months ago

Log in to reply

I think this is great. I can't verify that it's 100% correct because I haven't mastered RMT.

I don't think it's that long. Considering that you have generalized this for all odd n n , I think it's much better than any of the solutions provided, because they have only provided the solution for n = 5 n=5 (and for n = 3 n=3 by Kishore).

Pi Han Goh - 5 years, 7 months ago

Log in to reply

@Pi Han Goh :P, I don't expect to figure this right now...

Kishore S. Shenoy - 5 years, 7 months ago

No, I am not saying that my solution is long. I am saying that this problem has got many solutions(though, only 4) but more significantly, many comments on the solutions so that it has become quite difficult to scroll down. So, if you can disable Lu Chee Ket's solution(if he desires or if the discussion is over) or whatever you think might be correct.

Yeah, I also can't verify if it's 100% correct. It seems to verify for the values but I don't know.

BTW, can it have a better form? And, are you trying for even n n ?

Kartik Sharma - 5 years, 7 months ago

Log in to reply

@Kartik Sharma Let me delete his solution and his comments.

You might be interested in equations 37 and 38 .

I haven't completely understood your solution yet so it's unlikely that I can solve for even n n .

Pi Han Goh - 5 years, 7 months ago

Log in to reply

@Pi Han Goh Thanks a lot for linking me to that! Although the solutions to the results are almost obvious from my solution, but I really appreciate the form they are given in. Great!

Eulerian number, hmm. Well, can you make a problem using Eulerian number and stuff? I would love to see how they are used.

Kartik Sharma - 5 years, 7 months ago

@Pi Han Goh We can have some idea onto almost any definite integral almost immediately with concept of general numerical values to them in mind. Coincidence of solvable or not is not compulsory.

Lu Chee Ket - 5 years, 7 months ago

@Kartik Sharma You shall find trouble to evaluate (Pi/ 2)/ 999! Sum [(-1)^i (1000 i)(500 - i)^999] for i = 0 to 500, for n = 1000, without calculator of many significant figures. But 35 Pi/ 1602 is an almost immediate's estimation with calculator of only 15 significant figures.

Lu Chee Ket - 5 years, 7 months ago

Hey, in RMT, can we take ϕ ( k ) \phi(k) to be any function of k k ?

Kishore S. Shenoy - 5 years, 7 months ago

Log in to reply

Yeah, it can be any function. But what will matter is ϕ ( s ) \phi(-s) , so keep the limit of ϕ ( k ) \phi(k) at s s intact.

Kartik Sharma - 5 years, 7 months ago

Log in to reply

Oh, so that makes things easy...WoW!

Kishore S. Shenoy - 5 years, 7 months ago

sinc x is actually meant sin (x Pi)/ (x Pi) from the book I read, Kishore S Shenoy.

For n = 1000, 35 Pi/ 1602 is an immediate estimation. So the meaning of this question is just to study the fundamental thing since they are all solved. Numerical method is still a general method for example when we obtain a value of integral = - Euler's number of - 0.5772+.

Lu Chee Ket - 5 years, 7 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...