End in 2015

Find the smallest whole number which, when multiplied by 117, yields a product that ends in 2015.

Example : 2916 is a number which when multiplied by 107, yields 312012, which ends in 2012.


This question is from the set starts, ends, never ends in 2015 .


The answer is 7795.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

We can get the solution from working from the last digit for the product 117 n = p = A 2015 117n = p = \overline{A2015} . It is obvious that the last digit of n n must be 5 5 . And the rest the digits are found as follows:

117 × 5 585 63 15 117 × 95 11115 49 015 117 × 795 93015 49 2015 117 × 7795 91 2015 \begin{array} {rr} & 117 \\ \times & 5 \\ \hline & 585 \\ & \color{#D61F06}{63} \space \space \\ \hline & \color{#D61F06}{1}5 \end{array} \quad \Rightarrow \quad \begin{array} {rr} & 117 \\ \times & 95 \\ \hline & 11115 \\ & \color{#D61F06}{49} \quad \\ \hline & \color{#D61F06}{0}15 \end{array} \quad \Rightarrow \quad \begin{array} {rr} & 117 \\ \times & 795 \\ \hline & 93015 \\ & \color{#D61F06}{49} \quad \space \space \\ \hline & \color{#D61F06}{2}015 \end{array} \quad \Rightarrow \quad \begin{array} {rr} & 117 \\ \times & 7795 \\ \hline & 91\color{#3D99F6}{2015} \end{array}

n = 7795 \Rightarrow n = \boxed{7795}

I pretty much reverse multiplied and found numbers that allowed the product to end in 2015.

Sam Maltia - 5 years, 8 months ago

Can it be solved using vedic method of multiplication????

Kushagra Keserwani - 5 years, 8 months ago

Log in to reply

I don't know what is Vedic method.

Chew-Seong Cheong - 5 years, 8 months ago

Log in to reply

sir ,do this process is always works for this kind of problem .

Abdullah Ahmed - 5 years, 8 months ago

Log in to reply

@Abdullah Ahmed I think so.

Chew-Seong Cheong - 5 years, 8 months ago

Log in to reply

@Chew-Seong Cheong ..thanks sir

Abdullah Ahmed - 5 years, 8 months ago
Henry Wan
Oct 22, 2015

T h i s p r o b l e m c a n b e s o l v e d b y l i n e a r c o n g r u e n t E u q a t i o n . L e t x b e t h e w h o l e n u m b e r w h i c h y i e l d s a p r o d u c t t h a t e n d s i n 2015 w h e n m u l t i p l i e d b y 117. 117 x 2015 ( m o d 10000 ) B y E x t e n d e d E u c l i d e a n A l g o r i t h m , 1453 i s t h e m u l t i p l i c a t i v e i n v e r s e o f 117. S o , x 2015 × 1453 ( m o d 10000 ) x 7795 ( m o d 10000 ) T h e r e f o r e , 7795 i s t h e s m a l l e s t w h o l e n u m b e r w i t h t h e r e q u i r e d p r o p e r t y . This\quad problem\quad can\quad be\quad solved\quad by\quad linear\quad congruent\quad Euqation.\\ \\ Let\quad x\quad be\quad the\quad whole\quad number\quad \\ which\quad yields\quad a\quad product\quad that\quad ends\quad in\quad 2015\quad when\quad multiplied\quad by\quad 117.\\ \\ 117x\equiv 2015\quad (mod\quad 10000)\\ By\quad Extended\quad Euclidean\quad Algorithm,\quad 1453\quad is\quad the\quad multiplicative\quad inverse\quad of\quad 117.\\ So,\quad x\equiv 2015\times 1453\quad (mod\quad 10000)\\ \quad \quad \quad x\equiv 7795\quad (mod\quad 10000)\\ \\ Therefore,\quad \boxed { 7795 } \quad is\quad the\quad smallest\quad whole\quad number\quad with\quad the\quad required\quad property.

Mr Yovan
Oct 8, 2015

2015=403 . 5=13 . 31 .5 117= 13 . 9 We are looking for a number x that multiplied by 117 results in a y that end in 2015 How 117 is a multiple of 9 and 13,y must be a multiple of 9 and 13. To be a multiple of 9 the sum of digits of a number must be a multiple of 9. 2+0+1+5=8.the next multiple of 9 is 9 but we can just ad 1 to 2015 because 12015 is not a multiple of 13 and 2015 is and 10000 is not.so we need to get a y which has the sun of digits equal to 18 and the numbers added before 2015 must be a multiple of 13 .so we get in 912015.dividing it by 117 we found 7795

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...