Enjoy!

Geometry Level 5

Evaluate lim n m = 1 n k = 1 m cos ( 2 π k 2 m + 1 ) . -\lim_{n\to\infty}\sum_{m=1}^{n}\prod_{k=1}^{m}\cos\left(\frac{2\pi{k}}{2m+1}\right) .


The answer is 0.6.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Isaac Buckley
Sep 2, 2015

This question is beautiful.

First thing we do is notice: ( z e i θ ) ( z e i θ ) = z 2 2 z cos ( θ ) + 1 (z-e^{iθ})(z-e^{-iθ})=z^2-2z\cos(θ)+1

Therefore we can see: z 2 m + 1 1 = ( z 1 ) k = 1 m ( z 2 2 z cos ( 2 π k 2 m + 1 ) + 1 ) z^{2m+1}-1=(z-1)\prod\limits_{k=1}^{m}\left(z^2-2z\cos\left(\frac{2πk}{2m+1}\right)+1\right)

If we substitute z = i z=i we can see a wonderful cancelation and rearrange to get:

k = 1 m cos ( 2 π k 2 m + 1 ) = i 2 m + 1 1 ( i 1 ) ( 2 i ) m \prod\limits_{k=1}^{m}\cos\left(\frac{2πk}{2m+1}\right)=\frac{i^{2m+1}-1}{(i-1)(-2i)^m}

So when m = 2 r 1 m=2r-1 we have: k = 1 m cos ( 2 π k 2 m + 1 ) = ( 1 ) r 1 2 2 r 1 \prod\limits_{k=1}^{m}\cos\left(\frac{2πk}{2m+1}\right)=(-1)^r\frac{1}{2^{2r-1}}

When m = 2 r m=2r we have: k = 1 m cos ( 2 π k 2 m + 1 ) = ( 1 ) r 1 2 2 r \prod\limits_{k=1}^{m}\cos\left(\frac{2πk}{2m+1}\right)=(-1)^r\frac{1}{2^{2r}}

A better way to write this would be: k = 1 m cos ( 2 π k 2 m + 1 ) = ( 1 ) m ( m + 1 ) / 2 1 2 m \prod_{k=1}^{m}\cos\left(\frac{2\pi{k}}{2m+1}\right)=(-1)^{m(m+1)/2}\frac{1}{2^m}

Now we can write out the sum:

S = 1 2 1 4 + 1 8 + 1 16 . . . S=-\frac{1}{2}-\frac{1}{4}+\frac{1}{8}+\frac{1}{16}-...

When the signs change we can cancel to get:

S = 1 2 1 8 + 1 32 1 128 + . . . S=-\frac{1}{2}-\frac{1}{8}+\frac{1}{32}-\frac{1}{128}+...

It makes a geometric series which we sum up:

S = 1 2 1 8 1 1 1 4 = 0.6 S=-\frac{1}{2}-\frac{1}{8} \frac{1}{1--\frac{1}{4}}=-0.6

lim n m = 1 n k = 1 m cos ( 2 π k 2 m + 1 ) = 0.6 \large \therefore -\lim_{n\to\infty}\sum_{m=1}^{n}\prod_{k=1}^{m}\cos\left(\frac{2\pi{k}}{2m+1}\right)=\boxed{0.6}

Another beautiful problem by Otto sir and a beautiful solution too.

Knowing the identity -

k = 1 2 m cos ( 2 π k 2 m + 1 ) = 1 4 m \displaystyle \prod_{k=1}^{2m}{\cos\left(\frac{2\pi k}{2m+1}\right)} = \frac{1}{4^m}

(which can be proved much easily using roots of unity method)

Now, observe that the terms after n n th one(in short, the terms we don't want for this problem)

cos ( 2 ( m + 1 ) π 2 m + 1 ) , cos ( 2 ( m + 2 ) π 2 n + 1 ) , , cos ( 2 ( 2 m ) π 2 n + 1 ) \displaystyle \cos\left(\frac{2(m+1)\pi}{2m+1}\right), \cos\left(\frac{2(m+2)\pi}{2n+1}\right), \cdots, \cos\left(\frac{2(2m)\pi}{2n+1}\right)

We can write these as -

cos ( 2 π 2 m π 2 n + 1 ) , cos ( 2 π 2 ( m 1 ) π 2 n + 1 ) , , cos ( 2 π 2 π 2 m + 1 ) \displaystyle \cos\left(2\pi - \frac{2m\pi}{2n+1}\right), \cos\left(2\pi - \frac{2(m-1)\pi}{2n+1}\right), \cdots, \cos\left(2\pi - \frac{2\pi}{2m+1}\right)

This series is just the reverse of the series of the terms we have not considered now( cos ( 2 π x ) = cos ( x ) \cos(2\pi -x) = \cos(x) ). Hence,

k = 1 2 m cos ( 2 π k 2 m + 1 ) = k = 1 m cos ( 2 π k 2 m + 1 ) 2 = 1 4 m \displaystyle \prod_{k=1}^{2m}{\cos\left(\frac{2\pi k}{2m+1}\right)} = {\prod_{k=1}^{m}{\cos\left(\frac{2\pi k}{2m+1}\right)}}^{2} = \frac{1}{4^m}

k = 1 m cos ( 2 π k 2 m + 1 ) = ± 1 2 m \displaystyle \prod_{k=1}^{m}{\cos\left(\frac{2\pi k}{2m+1}\right)} = \pm \frac{1}{2^m}

Now, we can check the positive and negative case by observing few terms(we've to just check in which quadrant cos \cos lies and then deduce whether the whole product is > 0 >0 or < 0 <0 . Observation gives Positive ( m = 4 i + 3 , 4 i + 4 ) ; Negative ( m = 4 i + 1 , 4 i + 2 ) ; i Z + + 0 \text{Positive} \forall (m = 4i + 3, 4i + 4) ; \text{Negative} \forall (m = 4i + 1, 4i + 2) ; \forall i \in {Z}^{+} + {0}

Kartik Sharma - 5 years, 9 months ago

Log in to reply

@Otto Bretscher Is this approach correct?

Kartik Sharma - 5 years, 9 months ago

Log in to reply

Yes, exactly, that's essentially how I did I (upvote). It boils down to saying that k = 1 m cos ( 2 π k 2 m + 1 ) = ( 1 ) q 1 2 m , \prod_{k=1}^{m}\cos\left(\frac{2\pi{k}}{2m+1}\right)=(-1)^q\frac{1}{2^m}, where q q is the number of angles 2 π k 2 m + 1 \frac{2\pi{k}}{2m+1} in the second quadrant. A straightforward count shows that q = m + 1 2 q=\lfloor{\frac{m+1}{2}}\rfloor so that ( 1 ) q = ( 1 ) m ( m + 1 ) / 2 (-1)^q=(-1)^{m(m+1)/2} , leading to the formula I stated, k = 1 m cos ( 2 π k 2 m + 1 ) = ( 1 ) m ( m + 1 ) / 2 1 2 m \prod_{k=1}^{m}\cos\left(\frac{2\pi{k}}{2m+1}\right)=(-1)^{m(m+1)/2}\frac{1}{2^m} .

Alternatively, you can use Isaac's formula, ( 1 ) q = i 2 m + 1 1 ( i 1 ) ( i ) m , (-1)^q=\frac{i^{2m+1}-1}{(i-1)(-i)^m},

PS: All the n n' s in your post should be m m' s.

Otto Bretscher - 5 years, 9 months ago

Log in to reply

@Otto Bretscher Oops, sorry. Edited! Nicely done!

Kartik Sharma - 5 years, 9 months ago

Beautiful solution (upvote)! Thanks! You can write the formula k = 1 m cos ( 2 π k 2 m + 1 ) = ( 1 ) m ( m + 1 ) / 2 1 2 m \prod_{k=1}^{m}\cos\left(\frac{2\pi{k}}{2m+1}\right)=(-1)^{m(m+1)/2}\frac{1}{2^m} that works for even as well as odd m m .

Otto Bretscher - 5 years, 9 months ago

Log in to reply

So much more elegant. I'll add it into the solution.

I'm also using similar techniques to get a few other cool results. I think I'll post a similar problem tomorrow for my 100 day streak.

Thanks for inspiring me yet again. I've missed your problems.

Isaac Buckley - 5 years, 9 months ago

Log in to reply

Maybe you can apply your powerful approach to a closely related problem that I have posted earlier: If w 1 , . . , w n w_1,..,w_n are the n n th roots of unity, for odd n n , find i < j ( w i + w j ) \prod_{i<j}(w_i+w_j) . Give a closed-form solution.

Otto Bretscher - 5 years, 9 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...