Convert This Equation Into An Inequality

Algebra Level 5

x 2 + y 2 4 x + 6 y 4 = 0 \large x^2 + y^2 - 4x + 6y - 4 = 0 Over all real solutions to the above equation, if the range of x + 4 y x + 4y is [ m , n ] [m,n] , find m + n m+n .


The answer is -20.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

8 solutions

P C
Oct 20, 2016

First we rewrite the condition x 2 + y 2 + 2 ( 3 y 2 x ) 4 = 0 ( x 2 ) 2 + ( y + 3 ) 2 = 17 x^2+y^2+2(3y-2x)-4=0\Leftrightarrow (x-2)^2+(y+3)^2=17

This suggests that we should look at it in terms of ( x 2 ) (x-2) and ( y + 3 ) (y+3) . Hence, if we want to maximize Q = x + 4 y Q = x+4y , it is better to try and maximize ( x 2 ) + 4 ( y + 3 ) = x + 4 y + 10 = Q + 10 (x-2) + 4(y+3) = x + 4y + 10 = Q + 10 .

By Cauchy - Schwarz we have ( Q + 10 ) 2 ( 1 2 + 4 2 ) [ ( x 2 ) 2 + ( y + 3 ) 2 ] = 1 7 2 17 Q + 10 17 (Q+10)^2\leq (1^2+4^2)[(x-2)^2+(y+3)^2]=17^2\Rightarrow -17\leq Q+10\leq 17 27 Q 7 \therefore -27\leq Q\leq 7 So the sum is 20 -20 and { Q m i n = 27 ( x , y ) = ( 1 ; 7 ) Q m a x = 7 ( x , y ) = ( 3 ; 1 ) \begin{cases} Q_{min}=-27\Leftrightarrow (x,y)=(1;-7) \\ Q_{max}=7\Leftrightarrow (x,y)=(3;1)\end{cases}

Can you please elaborate the third and fourth lines? How do you get Q+10? Thanks.

Niranjan Khanderia - 4 years, 7 months ago

Log in to reply

Thank you, nice logic.

Niranjan Khanderia - 4 years, 7 months ago

We have Q = x + 4 y Q=x+4y so Q 2 + 12 = x 2 + 4 y + 12 = x 2 + 4 ( y + 3 ) = Q + 10 Q-2+12=x-2+4y+12=x-2+4(y+3)=Q+10

P C - 4 years, 7 months ago

Log in to reply

Niranjan's question isn't just about "What is the algebraic manipulation", but rather "What makes you consider this term"?

The reasoning is that "we want to write x + 4 y x + 4y in terms of x 2 x - 2 and y + 3 y + 3 , so the "closest" that we can come to is ( x 2 ) + 4 ( y 3 ) (x-2) + 4 ( y - 3) which is equal to x + 4 y + 10 x + 4y + 10 .

I've edited the solution to reflect the motivation for considering Q Q , as opposed to making it seem like magic.

Calvin Lin Staff - 4 years, 7 months ago
Yong See Foo
Oct 26, 2016

Basic geometry to the rescue! The given equation represents a circle described by ( x 2 ) 2 + ( y + 3 ) 2 = 17 (x-2)^2+(y+3)^2=17 . The circle must be tangent to the parallel lines x + 4 y = m x+4y=m and x + 4 y = n x+4y=n . By symmetry, the line that is equidistant to both of these lines (and also parallel to them) must pass through the center ( 2 , 3 ) (2,-3) , and this line can be described by x + 4 y = m + n 2 ( ) x+4y=\frac{m+n}{2} (*) . Substituting x = 2 , y = 3 x=2, y=-3 and solving gives m + n = 20 m+n=\boxed{-20} .

A justification of ( ) (*) is to just look at ratios. Let the lines described be

  • a : x + 4 y = m a: x+4y=m

  • b : x + 4 y = t b: x+4y=t

  • c : x + 4 y = n c: x+4y=n

with y y -intercepts of A , B , C A,B,C respectively, where b b is equidistant to a a and c c . Then by projection ratios A B = B C t m = n t t = m + n 2 AB=BC\Rightarrow t-m=n-t\Rightarrow t=\frac{m+n}{2} .

Nice beautiful solution. Up voted.

Niranjan Khanderia - 4 years, 7 months ago

Quick and nice!

Joel Tan - 4 years, 7 months ago

please explain the line "the circle must be tangent to the parallel lines ...."

space sizzlers - 4 years, 6 months ago
Chew-Seong Cheong
Oct 21, 2016

x 2 + y 2 + 2 ( 3 y 2 x ) 4 = 0 ( x 2 4 x + 4 ) + ( y 2 + 6 x + 9 ) 4 9 4 = 0 ( x 2 ) 2 + ( y + 3 ) 2 = 17 ( x 2 ) 2 17 + ( y + 3 ) 2 17 = 1 \begin{aligned} x^2 + y^2 +2(3y-2x) - 4 & = 0 \\ (x^2 - 4x +{\color{#3D99F6}{4}}) + (y^2 + 6x + {\color{#3D99F6}{9}}) -{\color{#D61F06}{4}}-{\color{#D61F06}{9}}-4 & = 0 \\ (x-2)^2 + (y+3)^2 & = 17 \\ \frac {(x-2)^2}{17} + \frac {(y+3)^2}{17} & = 1 \end{aligned}

Now, we can use the identity sin 2 θ + cos 2 θ = 1 \sin^2 \theta + \cos^2 \theta = 1 . Therefore, we have:

{ x 2 17 = cos θ x = 17 cos θ + 2 y + 3 17 = sin θ y = 17 sin θ 3 \begin{cases} \dfrac {x-2}{\sqrt{17}} = \cos \theta & \implies x = \sqrt{17} \cos \theta + 2 \\ \dfrac {y+3}{\sqrt{17}} = \sin \theta & \implies y = \sqrt{17} \sin \theta - 3 \end{cases}

And

A = x + 4 y = 17 cos θ + 2 + 4 17 sin θ 12 = 17 cos θ + 4 17 sin θ 10 = 17 17 ( 1 17 cos θ + 4 17 sin θ ) 10 = 17 sin ( θ + tan 1 1 4 ) 10 \begin{aligned} A & = x + 4y \\ & = \sqrt{17} \cos \theta + 2 + 4\sqrt{17} \sin \theta - 12 \\ & = \sqrt{17} \cos \theta + 4\sqrt{17} \sin \theta - 10 \\ & = \sqrt{17}\cdot \sqrt{17}\left(\frac 1{\sqrt{17}} \cos \theta + \frac 4{\sqrt{17}} \sin \theta \right) - 10 \\ & = 17 \sin \left( \theta + \tan^{-1} \frac 14 \right) - 10 \end{aligned}

A m a x = 17 10 = 7 when sin ( θ + tan 1 1 4 ) = 1 A m i n = 17 10 = 27 when sin ( θ + tan 1 1 4 ) = 1 \begin{aligned} \implies A_{max} & = 17-10 = 7 & \small \color{#3D99F6}{\text{when }\sin \left( \theta + \tan^{-1} \frac 14 \right) = 1} \\ A_{min} & = -17-10 = -27 & \small \color{#3D99F6}{\text{when }\sin \left( \theta + \tan^{-1} \frac 14 \right) = -1} \end{aligned}

A m a x + A m i n = 7 27 = 20 \implies A_{max} + A_{min} = 7 - 27 = \boxed{-20}


Alternative solution

The problem can also be solved using Lagrange multipliers as follows:

F ( x , y , λ ) = x + 4 y λ ( x 2 + y 2 + 6 y 4 x 4 ) F x = 1 λ ( 2 x 4 ) F y = 4 λ ( 2 y + 6 ) F λ = x 2 y 2 6 y + 4 x + 4 \begin{aligned} F(x,y,\lambda) & = x+4y -\lambda (x^2 + y^2 +6y-4x - 4) \\ \frac {\partial F}{\partial x} & = 1 - \lambda (2x -4) \\ \frac {\partial F}{\partial y} & = 4 - \lambda (2y + 6) \\ \frac {\partial F}{\partial \lambda} & = -x^2 - y^2 -6y+4x + 4 \end{aligned}

Putting F x = F y = F λ = 0 \displaystyle \frac {\partial F}{\partial x} = \frac {\partial F}{\partial y} = \frac {\partial F}{\partial \lambda} = 0 , we have 1 2 x 4 = 2 y + 3 = λ \dfrac 1{2x-4} = \dfrac 2{y+3} = \lambda y = 4 x 11 \implies y = 4x - 11 , and that

x 2 + y 2 + 6 y 4 x 4 = 0 x 2 + ( 4 x 11 ) 2 + 6 ( 4 x 11 ) 4 x 4 = 0 17 x 2 68 x + 51 = 0 x 2 4 x + 3 = 0 ( x 1 ) ( x 3 ) = 0 \begin{aligned} x^2 + y^2 +6y-4x - 4 & = 0 \\ x^2 + (4x - 11)^2 + 6(4x - 11) - 4x - 4 & = 0 \\ 17x^2 - 68x + 51 & = 0 \\ x^2 - 4x + 3 & = 0 \\ (x-1)(x-3) & = 0 \end{aligned}

Let us use Hessian matrix H \text H to check for the maximum and minimum.

H = Δ 2 F ( x , y , λ ) = 2 F x 2 2 F x y 2 F x λ 2 F y x 2 F y 2 2 F y λ 2 F λ x 2 F λ y 2 F λ 2 = 2 λ 0 2 x + 4 0 2 λ 2 y 6 2 x + 4 2 y 6 0 = 2 λ 0 1 λ 0 2 λ 1 λ 1 λ 1 λ 0 = 4 λ \begin{aligned} H & = \Delta^2 F(x,y,\lambda) = \begin{vmatrix} \frac {\partial^2 F}{\partial x^2} & \frac {\partial^2 F}{\partial x \partial y} & \frac {\partial^2 F}{\partial x \partial \lambda} \\ \frac {\partial^2 F}{\partial y \partial x} & \frac {\partial^2 F}{\partial y^2} & \frac {\partial^2 F}{\partial y \partial \lambda} \\ \frac {\partial^2 F}{\partial \lambda \partial x} & \frac {\partial^2 F}{\partial \lambda \partial y} & \frac {\partial^2 F}{\partial \lambda^2} \end{vmatrix} = \begin{vmatrix} -2\lambda & 0 & -2x+4 \\ 0 & -2\lambda & -2y-6 \\ -2x+4 & -2y-6 & 0 \end{vmatrix} = \begin{vmatrix} -2\lambda & 0 & -\frac 1\lambda \\ 0 & -2\lambda & -\frac 1\lambda \\ -\frac 1\lambda & -\frac 1\lambda & 0 \end{vmatrix} = - \frac 4\lambda \end{aligned}

{ x = 1 y = 4 ( 1 ) 11 = 7 λ = 1 2 x + 4 y = 27 H = 2 > 0 minimum x = 3 y = 4 ( 3 ) 11 = 1 λ = 1 2 x + 4 y = 7 H = 2 < 0 maximum \begin{cases} x = 1 & y = 4(1)-11 = -7 & \lambda = - \frac 12 & x+4y = -27 & \text H = 2 > 0 & \text{minimum} \\ x = 3 & y = 4(3)-11 = 1 & \lambda = \frac 12 & x+4y = 7 & \text H = -2 < 0 & \text{maximum} \end{cases}

Therefore, the required answer 7 27 = 20 7-27 = \boxed{-20} .

For your lagrange's multiplier solution, you didn't prove that you have obtained the min/max point.

For completeness, you should show that they are indeed at their respective extremal points. Hint: Hessian matrix .

Pi Han Goh - 4 years, 7 months ago

Log in to reply

Thanks, you are good. Now I know how to do the checking.

Chew-Seong Cheong - 4 years, 7 months ago

Tipo in last line of the first method. It is Amin + \color{#D61F06}{+} Amax.

Niranjan Khanderia - 4 years, 7 months ago

Log in to reply

Thanks, pal.

Chew-Seong Cheong - 4 years, 7 months ago
Archit Tripathi
Oct 24, 2016

The given equation represents a circle with centre at ( 2 , 3 ) (2,-3) and radius r r .

Now , we will use polar coordinates on the circle which are

( x , y ) (x,y) = ( 2 + r cos θ , 3 + r sin θ ) (2 + r\cos\theta , -3 + r\sin\theta) . And now we have to maximize and minimize the new x + 4 y x + 4y ,which is given by 10 + 17 r 2 -10 + \sqrt{17r^{2}} and 10 17 r 2 -10 - \sqrt{17r^{2}} respectively.

Adding these two we get result as 20 \boxed{-20} .

I think radius is root 17.

Niranjan Khanderia - 4 years, 7 months ago

Yup..I did a mistake in hurry.

Archit Tripathi - 4 years, 7 months ago

upvoted...

space sizzlers - 4 years, 6 months ago

x 2 + y 2 + 2 ( 3 y 2 x ) 4 = 0 ( x 2 ) 2 + ( y + 3 ) 2 = 17. So the condition is that both x and y are on this circle Center (2,-3). For the circle the highest and the lowest points on it are above and below the center (2,-3). So for both, x=2 on the above circle, y m a x = 3 + a , o r y m i n = 3 a , a is some number . 4 y m a x + 2 + 4 y m i n + 2 = 20. x^2+y^2+2(3y-2x)-4=0\Leftrightarrow (x-2)^2+(y+3)^2=17.\\ \text{So the condition is that both x and y are on this circle Center (2,-3).}\\ \text{For the circle the highest and the lowest points on it are above and below the center (2,-3).}\\ \text{So for both, x=2 on the above circle, }y_{max}=-3+ a, \ \ or\ \ y_{min}=-3 - a, \text{ a is some number .}\\ \therefore\ 4*y_{max}+2 \ + \ 4*y_{min}+2=\Huge\ \ \ \ \color{#D61F06}{20}.

Very nice interpretation! However, you're asked for max ( x + 4 y ) + min ( x + 4 y ) \max (x+4y) + \min (x+4y) instead of the calculation that you did.

Do you see how to fix the solution by considering the family of lines x + 4 y = k x+4y = k ?

Calvin Lin Staff - 4 years, 7 months ago

Log in to reply

Thank you. It is surprising that the result of what I have solved is the same for the problem !! I feel there is some connection.
The correct solution as you have suggest is as under.
Let x + 4y = k. So x = k - 4y. For extreme the points must be on the circumference of the circle of condition ( x 2 ) 2 + ( y + 3 ) 2 = 17. S o ( k 4 y 2 ) 2 + ( y + 3 ) 2 = 17. S o l v i n g f o r q u a d r a t i c i n k , k = 4 y + 2 ± a . a i s s o m e r e a l n u m b e r . k m a x = 4 y m a x + 2 + a . k m i n = 4 y m i n + 2 a . y e x t r e m u m o n t h e c i r c l e w h e n x = 2 . y e x t r e m u m = ± 17 3. k m a x + k m i n = 4 ( 17 3 17 3 ) + 2 + 2 = 20. (x - 2)^2 + (y + 3)^2 =17. \\ So \ (k - 4y- 2)^2 + (y + 3)^2 = 17.\ Solving \ for \ quadratic \ in \ k, \\ k = 4y + 2\ \pm\ a. \ a\ is\ some \ real\ number.\\ k_{max}=4y_{max} \ +\ 2\ +\ a.\ \ k_{min}=4y _{min} \ +\ 2\ -\ a.\\ y{extremum } \ on \ the\ circle\ when\ x=\ 2\ .\\ \therefore\ y_{extremum }=\pm\sqrt{17}\ -3.\\ k_{max}+k_{min}= 4( \sqrt{17}\ -3-\sqrt{17}\ -3)+2+2 =20.

Niranjan Khanderia - 4 years, 7 months ago

Log in to reply

The connection is mostly coincidental. We were interested in the lines with gradient -4, while you found the lines with gradient = 0. Because we have a circle, finding the distance between 2 tangential lines is independent of the gradient, and turns out to just be the diameter of the circle.

If the conditions yielded an ellipse, then the answer would be different.

Can you update the solution? Thanks!

Calvin Lin Staff - 4 years, 7 months ago

Log in to reply

@Calvin Lin Thank you for your e.mail. But before posting my solution, please look into the following if it is correct. Since the extreme values x and y can take with in the given condition are
2 ± R , a n d 3 ± R , w h e r e R i s t h e r a d i u s o f g i v e n c o n d i t i o n c i r c l e , c e n t e r ( 2 , 3 ) . 2\ \pm\ R,\ and -3\ \pm\ R, \ where\ R \ is\ the\ radius\ of\ given\ condition\ circle, \ center (2,-3).\\
So 2 is the midpoint of the two extreme x, and (-3) that of extreme y.
But they are the same point.
But the sum of extreme values is 2*midpoint value. So the sum of maximum and minimum for x + 4y= 2 * 2 - 2 * 4(-3)=20.
If we were interested only in maximum or the minimum the slope -4 would be of important.
If the midpoints of x and y were not at the same point, we could not use this method.
I thing my reasoning is also good for an ellipse. In fact any condition where the midpoint loci intersect, if at all they intersect, will give us the values of required x and y. In our case the loci are x=2 and y= - 3.




Niranjan Khanderia - 4 years, 7 months ago

As the real solutions of x 2 + y 2 4 x + 6 y 4 = 0 ( x 2 ) 2 + ( y + 3 ) 2 = 17 x^2+y^2-4x+6y-4=0 \Rightarrow (x-2)^2+(y+3)^2=17 make a circle with radius 17 \sqrt{17} , so we have: m = m i n ( x + 4 y ) = 2 17 + 4 ( 3 17 ) = 10 5 17 m=min(x+4y)=2-\sqrt{17}+4(-3-\sqrt{17})=-10-5\sqrt{17} n = m a x ( x + 4 y ) = 2 + 17 + 4 ( 3 + 17 ) = 10 + 5 17 n=max(x+4y)=2+\sqrt{17}+4(-3+\sqrt{17})=-10+5\sqrt{17} So, summing up we find: m + n = 20 m+n=-20

Aditya Dhawan
Oct 29, 2016

F r o m t h e e q u a t i o n , y = ± 13 x 2 + 4 x 3 f ( x ) = x + 4 y = ± 4 13 x 2 + 4 x 12 + x f ( x ) = ± { 16 8 x } 2 13 x 2 + 4 x + 1 F o r e x t r e m a , f ( x ) = 0 ± { 16 8 x } 2 13 x 2 + 4 x = 1 x 2 4 x + 3 = 0 x = 1 o r 3 W e t h u s c o n s i d e r t h e p o i n t s : ( 1 , 1 ) 5 ( 1 , 7 ) 27 M i n i m a ( 3 , 1 ) 7 M a x i m a ( 3 , 7 ) 25 27 f ( x ) 7 From\quad the\quad equation,\quad y=\quad \pm \sqrt { 13-{ x }^{ 2 }+4x } -3\\ \therefore \quad f\left( x \right) =\quad x+4y=\quad \pm 4\sqrt { 13-{ x }^{ 2 }+4x } -12+x\\ \Rightarrow \quad f^{ ' }\left( x \right) =\quad \frac { \pm \left\{ 16-8x \right\} }{ 2\sqrt { 13-{ x }^{ 2 }+4x } } +\quad 1\quad \\ For\quad extrema,\quad f^{ ' }\left( x \right) =0\\ \Rightarrow \frac { \pm \left\{ 16-8x \right\} }{ 2\sqrt { 13-{ x }^{ 2 }+4x } } =-1\Rightarrow { x }^{ 2 }-4x+3=0\Rightarrow \quad x=1\quad or\quad 3\\ We\quad thus\quad consider\quad the\quad points:\\ (1,1)\longrightarrow \quad 5\\ (1,-7)\longrightarrow \quad \boxed { -27 } \quad Minima\\ (3,1)\longrightarrow \quad \boxed { 7 } \quad Maxima\\ (3,-7)\longrightarrow \quad -25\quad \\ \therefore \quad \boxed { -27\le f\left( x \right) \le 7 }

Navneet Prabhat
Oct 29, 2016

Answer would be twice the coordinate of centre of the circle. Centre of circle is 2,-3. Hence answer is -20. If you are unable to understand draw the figure of circle and a variable line x+4 y=c. Then you would understand.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...