n = 4 ∑ ∞ ( n − 2 ) ( n − 1 ) n ( n + 1 ) ( n + 2 ) 1
The infinite sum above can be expressed as b a , where a and b are coprime positive integers, find a + b .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Very simple
I did the same way.
Similar to Christian Daang 's approach.
S = n = 4 ∑ ∞ ( n − 2 ) ( n − 1 ) n ( n + 1 ) ( n + 2 ) 1 By partial fractions – see below. = n = 4 ∑ ∞ ( 2 4 ( n − 2 ) 1 − 6 ( n − 1 ) 1 + 4 n 1 − 6 ( n + 1 ) 1 + 2 4 ( n − 2 ) 1 ) = 2 4 1 n = 4 ∑ ∞ ( n − 2 1 − n − 1 4 + n 6 − n + 1 4 + n − 2 1 ) = 2 4 1 n = 4 ∑ ∞ ( n − 2 1 − n − 1 1 − n − 1 3 + n 3 + n 3 − n + 1 3 − n + 1 1 + n − 2 1 ) = 2 4 1 ( 2 1 − 3 3 + 4 3 − 5 1 ) = 2 4 1 ( 2 0 1 0 − 2 0 + 1 5 − 4 ) = 4 8 0 1
⟹ a + b = 1 + 4 8 0 = 4 8 1
Partial fractions:
Let ( n − 2 ) ( n − 1 ) n ( n + 1 ) ( n + 2 ) 1 = n − 2 A + n − 1 B + n C + n + 1 D + n + 2 E .
Multiplying both sides with ( n − 2 ) ( n − 1 ) n ( n + 1 ) ( n + 2 ) , we get:
1 = A ( n − 1 ) n ( n + 1 ) ( n + 2 ) + B ( n − 2 ) n ( n + 1 ) ( n + 2 ) + C ( n − 2 ) ( n − 1 ) ( n + 1 ) ( n + 2 ) + D ( n − 2 ) ( n − 1 ) n ( n + 2 ) + E ( n − 2 ) ( n − 1 ) n ( n + 1 )
If we put n = 2 , then we have 1 = A ( 2 − 1 ) 2 ( 2 + 1 ) ( 2 + 2 ) + B ( 0 ) + C ( 0 ) + D ( 0 ) + E ( 0 ) .
⟹ n − 2 A n − 1 B n C n + 1 D n + 2 E = ( n − 2 ) ( n − 1 ) n ( n + 1 ) ( n + 2 ) 1 ∣ ∣ ∣ ∣ n = 2 = ( 2 − 1 ) ( 2 ) ( 2 + 1 ) ( 2 + 2 ) 1 = ( 1 ) ( 2 ) ( 3 ) ( 4 ) 1 = 2 4 1 = ( n − 2 ) ( n − 1 ) n ( n + 1 ) ( n + 2 ) 1 ∣ ∣ ∣ ∣ n = 1 = ( 1 − 2 ) ( 1 ) ( 1 + 1 ) ( 1 + 2 ) 1 = ( − 1 ) ( 1 ) ( 2 ) ( 3 ) 1 = − 6 1 = ( n − 2 ) ( n − 1 ) n ( n + 1 ) ( n + 2 ) 1 ∣ ∣ ∣ ∣ n = 0 = ( 0 − 2 ) ( 0 − 1 ) ( 0 + 1 ) ( 0 + 2 ) 1 = ( − 2 ) ( − 1 ) ( 1 ) ( 2 ) 1 = 4 1 = ( n − 2 ) ( n − 1 ) n ( n + 1 ) ( n + 2 ) 1 ∣ ∣ ∣ ∣ n = − 1 = ( − 1 − 2 ) ( − 1 − 1 ) ( − 1 ) ( − 1 + 2 ) 1 = ( − 3 ) ( − 2 ) ( − 1 ) ( 1 ) 1 = − 6 1 = ( n − 2 ) ( n − 1 ) n ( n + 1 ) ( n + 2 ) 1 ∣ ∣ ∣ ∣ n = − 2 = ( − 2 − 2 ) ( − 2 − 1 ) ( − 2 ) ( − 2 + 1 ) 1 = ( − 4 ) ( − 3 ) ( − 2 ) ( − 1 ) 1 = 2 4 1
Sir, can you help me to prove that ( n − 2 ) ( n − 1 ) ( n ) ( n + 1 ) ( n + 2 ) 1 = 2 4 ( n − 2 ) 1 − 6 ( n − 1 ) 1 + 4 n 1 − 6 ( n − 1 ) 1 + 2 4 ( n − 2 ) 1 ?
Log in to reply
I have added the explanation as note.
Log in to reply
Thank you sir. Very nice solution!
Log in to reply
@Fidel Simanjuntak
–
This is the link.
link text
Does it work for another expression? For example ( n + 3 ) ( n + 4 ) ( n + 5 ) ( n + 6 ) 1
Log in to reply
@Fidel Simanjuntak – Yes. Why don't you work it out to find out. You learn better that way.
Applying Partial Fractions, we can simplify it to:
n = 4 ∑ ∞ ( ( n − 2 ) ( n − 1 ) ( n ) ( n + 1 ) ( n + 2 ) 1 ) = n = 4 ∑ ∞ ( ( n − 2 ) ( 2 4 ) 1 − ( n − 1 ) ( 6 ) 1 + ( n ) ( 4 ) 1 − ( n + 1 ) ( 6 ) 1 + ( n + 2 ) ( 2 4 ) 1 ) = 2 4 1 ⋅ n = 4 ∑ ∞ ( ( n − 2 ) 1 − ( n − 1 ) 4 + ( n ) 6 − ( n + 1 ) 4 + ( n + 2 ) 1 ) = 2 4 1 ⋅ ⎝ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎛ 2 1 3 1 4 1 5 1 6 1 7 1 ⋮ ( n − 2 ) 1 − 3 4 − 4 4 − 5 4 − 6 4 − 7 4 − 8 4 ⋮ − ( n − 1 ) 4 + 4 6 + 5 6 + 6 6 + 7 6 + 8 6 + 9 6 ⋮ + ( n ) 6 − 5 4 − 6 4 − 7 4 − 8 4 − 9 4 − 1 0 4 ⋮ − ( n + 1 ) 4 + 6 1 + 7 1 + 8 1 + 9 1 + 1 0 1 + 1 1 1 ⋮ + ( n + 2 ) 1 ⎠ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎞
As you notice, as the pattern will continues, the numbers colored in blue will be cancelled out and the sum will be: 2 4 1 ⋅ ( 2 1 − 3 4 + 3 1 + 4 6 − 4 4 + 4 1 − 5 4 + 5 6 − 5 4 + 5 1 ) − ( n − 1 ) 4 + ( n ) 6 − ( n + 1 ) 4 + ( n + 2 ) 1
which will converge to:
2 4 1 ⋅ ( 2 1 − 3 4 + 3 1 + 4 6 − 4 4 + 4 1 − 5 4 + 5 6 − 5 4 + 5 1 ) = 4 8 0 1 ⟹ a + b = 4 8 1
∑ n = 4 ∞ ( n − 2 ) ( n − 1 ) n ( n + 1 ) ( n + 2 ) 1 = 4 1 ∑ ( n − 2 ) ( n − 1 ) ( n ) ( n + 1 ) 1 − ( n − 1 ) n ( n + 1 ) ( n + 2 ) 1 = 4 . 2 . 3 . 4 . 5 1 = 4 8 0 1 { ∵ ∑ k = a n f ( k ) − f ( k + 1 ) = f ( a ) − f ( n + 1 ) }
Problem Loading...
Note Loading...
Set Loading...
n = 4 ∑ ∞ ( n − 2 ) ( n − 1 ) n ( n + 1 ) ( n + 2 ) 1
= 4 1 n = 4 ∑ ∞ ( n − 2 ) ( n − 1 ) n ( n + 1 ) ( n + 2 ) ( n + 2 ) − ( n − 2 )
= 4 1 n = 4 ∑ ∞ ( ( n − 2 ) ( n − 1 ) n ( n + 1 ) 1 − ( n − 1 ) n ( n + 1 ) ( n + 2 ) 1 )
On observing we can see that on expanding the sum; everything cancels out except 2 ∗ 3 ∗ 4 ∗ 5 1
So, the sum is 4 1 ∗ 2 ∗ 3 ∗ 4 ∗ 5 1 = 4 8 0 1
And our answer is 1 + 4 8 0 = 4 8 1