Cos Sine to the tan limit

Calculus Level 2

lim x 0 ( cos 4 ( 3 x ) + cos x 2 cos ( 2 x ) ) 1 tan ( x ) = ? \large \lim_{ x \to 0} \left(\frac{ \cos ^4 (3x) + \cos x}{2\cos (2x)} \right) ^{\frac{1}{\tan (x)}} = \ ?


The answer is 1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Rohit Ner
Jun 20, 2015

lim x 0 ( cos 4 3 x + cos x 2 cos 2 x ) 1 tan x = e lim x 0 ( cos 4 3 x + cos x 2 cos 2 x 1 ) ( 1 tan x ) = e lim x 0 ( 1 + 1 2 1 ) ( 1 tan x ) = e lim x 0 ( 0 tan x ) = e 0 = 1 \large \begin{aligned}\lim_{ x \to 0} \left(\frac{ \cos ^4 3x + \cos x}{2\cos 2x} \right) ^{\frac{1}{\tan x}} & \large={ e }^{ \displaystyle\lim _{ x\to 0 } \left( \frac { \cos ^{ 4 } 3x+\cos x }{ 2\cos 2x } -1 \right) \left( \frac { 1 }{ \tan { x } } \right) } \\ & \large={ e }^{ \displaystyle\lim _{ x\to 0 } \left( \frac { 1+1 }{ 2 } -1 \right) \left( \frac { 1 }{ \tan { x } } \right) } \\ & \large={ e }^{ \displaystyle\lim _{ x\to 0 } \left( \frac { 0 }{ \tan { x } } \right) } \\ & \large={e}^{0} \\ & \large \Huge\color{#3D99F6}{=\boxed 1} \end{aligned}

e lim x 0 ( 0 tan x ) { e }^{ \displaystyle\lim _{ x\to 0 } \left( \frac { 0 }{ \tan { x } } \right) } The term stated above is not a 0 0 \frac{0}{0} form because the value of x x tends to zero and doesnt exactly correspond to zero.

Moderator note:

Your very first line already don't make sense.

e lim x 0 ( cos 4 3 x + cos x 2 cos 2 x 1 ) ( 1 tan x ) { e }^{ \lim _{ x\to 0 } \left( \frac { \cos ^{ 4 } 3x+\cos x }{ 2\cos 2x } -1 \right) \left( \frac { 1 }{ \tan { x } } \right) } e lim x 0 ( 1 + 1 2 1 ) ( 1 tan x ) \neq { e }^{ \lim _{ x\to 0 } \left( \frac { 1+1 }{ 2 } -1 \right) \left( \frac { 1 }{ \tan { x } } \right) } = e lim x 0 ( 1 + 1 2 1 ) ( 1 tan x ) ={ e }^{ \lim _{ x\to 0 } \left( \frac { \rightarrow 1+\rightarrow 1 }{ \rightarrow 2 } -1 \right) \left( \frac { 1 }{ \tan { x } } \right) }

You did it wrong.

Abhishek Sharma - 5 years, 11 months ago

Log in to reply

Yes you are right. Further simplification of the first bracket in you comment tends to zero. So what's wrong with my solution?

Rohit Ner - 5 years, 11 months ago

Log in to reply

Correct and complete your solution.

Abhishek Sharma - 5 years, 11 months ago

Log in to reply

@Abhishek Sharma Actually the steps you mentioned are too obvious and don't need to be necessarily mentioned. :)

Rohit Ner - 5 years, 11 months ago

Log in to reply

@Rohit Ner So what is the point of writing the solution?

Abhishek Sharma - 5 years, 11 months ago

Log in to reply

@Abhishek Sharma My solution just intends to give a idea of the approach. You can post yours if you find mine not up to the mark.

Rohit Ner - 5 years, 11 months ago

Nice solution rohit.Absolutely perfect.

shivansh mittal - 5 years, 11 months ago

pls explain the 1st line . how that -1 came ? i want to knw more about limits . plzz help me

Anand O R - 5 years, 11 months ago
Shivansh Mittal
Jun 20, 2015

Put x=0 →cos0=1 , (cos3×0)^4=1 ,cos2×0=1 and in 1/tanx would be tending to infinity. We know that (1)^→infinity =1. Hence Ans =1.

Moderator note:

Your answer is wrong. 1 1^\infty is an indeterminate form.

You got that answer by luck. 1 1^\infty is indeterminate form.

Kushal Patankar - 5 years, 11 months ago

Log in to reply

Absolute 1^tending toinfinity is not an indeterminate form.Infact tending to 1^ tending to infinity is an indeterminate form

shivansh mittal - 5 years, 11 months ago

Log in to reply

Kushal kindly revisit the indeterminate forms before replying.The following are indeterminate forms:- 1)→0/→0 2)→infinity/→infinity 3)→infinity-→infinity 4)→infinity ×→0 5)(→1)^→infinity 6)(→0)^→0 7)(→infinity)^→0 And except them no other indeterminate form exists.

shivansh mittal - 5 years, 11 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...