Evaluate Part 1

Calculus Level 2

Evaluate 1 + n = 1 ( 1 ) n x 2 n ( 2 n ) ! 1+\displaystyle \sum_{n=1}^{\infty} \frac{(-1)^nx^{2n}}{(2n)!}

sin ( x ) \sin(x) tan ( x ) \tan(x) cos ( x ) \cos(x)

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Nov 19, 2018

By Maclaurin series, 1 + n = 1 ( 1 ) n x 2 n ( 2 n ) ! = n = 0 ( 1 ) n x 2 n ( 2 n ) ! = cos x \displaystyle 1 + \sum_{\color{#3D99F6}n=1}^\infty \frac {(-1)^nx^{2n}}{(2n)!} = \sum_{\color{#D61F06}n=0}^\infty \frac {(-1)^nx^{2n}}{(2n)!} = \boxed{\cos x} .

Proof: According to Maclaurin series, we have:

f ( x ) = n = 0 f ( n ) ( 0 ) n ! x n where f ( n ) ( x ) is the n th derivative of f ( x ) cos x = n = 0 d n cos x d x n x = 0 x n n ! = cos 0 0 ! sin 0 1 ! x cos 0 2 ! x 2 + sin 0 3 ! x 3 + cos 0 4 ! x 4 sin 0 5 ! x 5 cos 0 6 ! x 6 + sin 0 7 ! x 7 + = 1 1 2 ! x 2 + 1 4 ! x 4 1 6 ! x 6 + 1 8 ! x 8 1 10 ! x 10 + 1 12 ! x 12 = n = 0 ( 1 ) n x 2 n ( 2 n ) ! \begin{aligned} f(x) & = \sum_{n=0}^\infty \frac {\color{#3D99F6}f^{(n)}(0)}{n!}x^n \quad \quad \small \color{#3D99F6} \text{where } f^{(n)}(x) \text{ is the }n\text{th derivative of }f(x) \\ \implies \cos x & = \sum_{n=0}^\infty \frac {d^n\cos x}{dx^n} \bigg|_{x=0} \cdot \frac {x^n}{n!} \\ & = \frac {\cos 0}{0!} - \frac {\sin 0}{1!}x - \frac {\cos 0}{2!}x^2 + \frac {\sin 0}{3!}x^3 + \frac {\cos 0}{4!}x^4 - \frac {\sin 0}{5!}x^5 - \frac {\cos 0}{6!}x^6 + \frac {\sin 0}{7!}x^7 + \cdots \\ & = 1 - \frac 1{2!}x^2 + \frac 1{4!}x^4 - \frac 1{6!}x^6 + \frac 1{8!}x^8 - \frac 1{10!}x^{10} + \frac 1{12!}x^{12} - \cdots \\ & = \sum_{n=0}^\infty \frac {(-1)^nx^{2n}}{(2n)!} \end{aligned}

@Gia Hoàng Phạm , like \sum, \frac and \times, you should add a backslash "\" before \tan, \sin and \cos. I have changed the answer options for you. Note that \tan x tan x \tan x , the tan is not italic (slanding) and tan and x is separated by a space. But tan x t a n x tan x . the tan is italic which is for constant and variable (such as x, which appears italic). Notice also that there is no space between tan and x.

You can see the LaTex code by placing your mouse on top of the formulas.

Chew-Seong Cheong - 2 years, 6 months ago

Log in to reply

Ok,but all of the x n x^n should be change into x 2 n x^{2n}

Gia Hoàng Phạm - 2 years, 6 months ago

Log in to reply

Thanks. I have added the 2.

Chew-Seong Cheong - 2 years, 6 months ago

Log in to reply

@Chew-Seong Cheong And the 1 1 2 ! + 1 4 ! 1 6 ! + 1 8 ! 1 10 ! + 1 12 ! 1-\frac{1}{2!}+\frac{1}{4!}-\frac{1}{6!}+\frac{1}{8!}-\frac{1}{10!}+\frac{1}{12!}-\dots should be 1 x 2 2 ! + x 4 4 ! x 6 6 ! + x 8 8 ! x 10 10 ! + x 12 12 ! 1-\frac{x^2}{2!}+\frac{x^4}{4!}-\frac{x^6}{6!}+\frac{x^8}{8!}-\frac{x^{10}}{10!}+\frac{x^{12}}{12!}-\dots

Gia Hoàng Phạm - 2 years, 5 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...