Every third binomial: 671 times

Algebra Level 4

Compute the remainder when ( 2014 1 ) + ( 2014 4 ) + ( 2014 7 ) + + ( 2014 2014 ) \dbinom {2014}{1} + \dbinom {2014}{4} + \dbinom {2014}{7} + \cdots + \dbinom {2014}{2014} is divided by 1000 1000 .


The answer is 461.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Sean Ty
Sep 20, 2014

Nice problem, whenever we see problems like this, we could use the Roots of Unity . In this case, we use the primitive cube root of 1 1 , which we will call w w . Therefore w 2 + w + 1 = 0 w^2 +w + 1 = 0 and w 3 = 1 w^3 =1 . We know that:

( 1 + 1 ) 2014 = ( 2014 0 ) + ( 2014 1 ) + ( 2014 2 ) + + ( 2014 2014 ) (1+1)^{2014}=\binom{2014}{0}+\binom{2014}{1}+\binom{2014}{2}+\dots+\binom{2014}{2014} w 2 ( 1 + w ) 2014 = ( 2014 0 ) w 2 + ( 2014 1 ) + ( 2014 2 ) w + + ( 2014 2014 ) w^{2}(1+w)^{2014}=\binom{2014}{0}w^{2}+\binom{2014}{1}+\binom{2014}{2}w+\dots+\binom{2014}{2014} w ( 1 + w 2 ) 2014 = ( 2014 0 ) w + ( 2014 1 ) + ( 2014 2 ) w 2 + + ( 2014 2014 ) w(1+w^{2})^{2014}=\binom{2014}{0}w+\binom{2014}{1}+\binom{2014}{2}w^{2}+\dots+\binom{2014}{2014}

Also, it's widely known that k = 0 n ( n k ) = 2 n \displaystyle \sum_{k=0}^{n} \binom{n}{k}=2^{n} .

For convenience, let ( 2014 1 ) + ( 2014 4 ) + + ( 2014 2014 ) = m \displaystyle \binom{2014}{1}+\binom{2014}{4}+\dots+\binom{2014}{2014}=m

Adding our first three equations, we get w 2 ( 1 + w ) 2014 + w ( 1 + w 2 ) 2014 + 2 2014 = 3 m w^{2}(1+w)^{2014}+w(1+w^{2})^{2014}+2^{2014}=3m

w + w 2 + 2 2014 = 3 m \implies w+w^{2}+2^{2014}=3m

m = 2 2014 1 3 \implies m=\dfrac{2^{2014}-1}{3}

And m 461 ( m o d 1000 ) m \equiv \boxed{461} \pmod{1000}

By Euler's Theorem, 2 ϕ ( 125 ) 2 100 1 ( m o d 125 ) 2^{\phi(125)} \equiv 2^{100} \equiv 1 \pmod{125} , so 2 2014 2 14 ( 2 7 ) 2 12 8 2 3 2 9 ( m o d 125 ) 2^{2014} \equiv 2^{14} \equiv (2^7)^2 \equiv 128^2 \equiv 3^2 \equiv 9 \pmod{125} . Also, 2 2014 0 ( m o d 8 ) 2^{2014} \equiv 0 \pmod{8} . Since 384 9 ( m o d 125 ) 384 \equiv 9 \pmod{125} and 384 0 ( m o d 8 ) 384 \equiv 0 \pmod{8} , by the Chinese Remainder Theorem, 2 2014 384 ( m o d 1000 ) 2^{2014} \equiv 384 \pmod{1000} .

Then 2 2014 1 383 ( m o d 1000 ) 2^{2014} - 1 \equiv 383 \pmod{1000} , and 2 2014 1 3 383 3 1 ( m o d 1000 ) . \frac{2^{2014} - 1}{3} \equiv 383 \cdot 3^{-1} \pmod{1000}. Since 3 667 2001 1 ( m o d 1000 ) 3 \cdot 667 \equiv 2001 \equiv 1 \pmod{1000} , 3 1 667 ( m o d 1000 ) 3^{-1} \equiv 667 \pmod{1000} , so 383 3 1 383 667 461 ( m o d 1000 ) 383 \cdot 3^{-1} \equiv 383 \cdot 667 \equiv \boxed{461} \pmod{1000} .

Jon Haussmann - 6 years, 8 months ago

Log in to reply

Sorry guys, I have rechecked my answer and yes I multiplied it wrongly. Peace

Sean Ty - 6 years, 8 months ago

Log in to reply

can you please elaborate how you got your second and third equation?? Simplification i got , but how you got the equations themselves is what i want to learn. @Sean Ty

Ashu Dablo - 6 years, 8 months ago

Log in to reply

@Ashu Dablo You can easily get the ( 1 + w ) (1+w) and ( 1 + w 2 ) (1+w^{2}) . Although, if you expand it, you won't get the desired cancellations. Therefore, we have to multiply it by some power of w w such that the desired cancellations will happen.

Sean Ty - 6 years, 8 months ago

@Sean Ty : It will be helpful for others if you edit your solution to add @Jon Haussmann 's comment

Abhisek Panigrahi - 2 years, 5 months ago

One can use the multisection formula and obtain the result directly. The multisection formula states that-

If f ( x ) = k a k x k f(x)=\sum_{k}a_{k}x^{k} ,

then k = r ( m o d m ) a k x k = 1 m s = 0 m 1 ω r s f ( ω s x ) \sum_{k=r(mod m)}a_{k}x^{k}=\frac{1}{m}\sum_{s=0}^{m-1}ω^{-rs}f(ω^{s}x) where ω = e 2 k π m ω=e^{\frac{2kπ}{m}}

Souryajit Roy - 6 years, 8 months ago

ANSWER SHOULD BE 461

Abhishek Bakshi - 6 years, 8 months ago

Log in to reply

Fixed; apologies for the inconvenience!

Ahaan Rungta - 6 years, 8 months ago

Answer should be 461 @Sean Ty

Krishna Sharma - 6 years, 8 months ago

How did you get that w^2(1+w)^{2014}+w(1+w^2)^{2014}} = w+w^2?

Allen Wang - 5 years, 3 months ago

Log in to reply

w^2 + w + 1 = 0 <=> 1 + w = - w^2 => w^2(-w^2)^{2014} = w^4030

4030 mod 3 = 1 => w^2(1+w)^{2014} = w

same thing for w(1+w^2)^{2014}}

Daniel Dratschuk - 1 year, 1 month ago

This means that adding every third binomial coefficient just gives one third of the sum of the whole row (ignoring ( 2014 0 ) \binom {2014}0 ), right?

Henry U - 2 years, 4 months ago
Patrick Corn
Sep 22, 2014

Let a n , b n , c n a_n, b_n, c_n be the sum of the binomial coefficients ( n i ) \binom{n}{i} where i i is congruent to 0 , 1 , 2 0,1,2 mod 3 3 , respectively. The problem is asking for b 2014 b_{2014} .

Pascal's identity gives a n = c n 1 + a n 1 b n = a n 1 + b n 1 c n = b n 1 + c n 1 \begin{aligned} a_n &= c_{n-1} + a_{n-1} \\ b_n &= a_{n-1} + b_{n-1} \\ c_n &= b_{n-1} + c_{n-1} \\ \end{aligned} so we can apply recursively to get a n = c n 2 + 2 n 2 b n = a n 2 + 2 n 2 c n = b n 2 + 2 n 2 \begin{aligned} a_n &= c_{n-2} + 2^{n-2} \\ b_n &= a_{n-2} + 2^{n-2} \\ c_n &= b_{n-2} + 2^{n-2} \\ \end{aligned} and applying this three times gives b n = 2 n 2 + 2 n 4 + 2 n 6 + b n 6 b_n = 2^{n-2} + 2^{n-4} + 2^{n-6} + b_{n-6} .

In particular b 2014 = 2 2012 + 2 2010 + + 2 4 + b 4 = 2 2012 + 2 2010 + + 2 4 + 5 = 2 2012 + 2 2010 + + 2 4 + 2 2 + 1 = 2 2014 1 3 \begin{aligned} b_{2014} = 2^{2012} + 2^{2010} + \cdots + 2^4 + b_4 &= 2^{2012} + 2^{2010} + \cdots + 2^4 + 5 \\ &= 2^{2012} + 2^{2010} + \cdots + 2^4 + 2^2 + 1 \\ &= \frac{2^{2014}-1}3 \end{aligned} and we can proceed as in the other solution.

Same way here

敬全 钟 - 6 years, 8 months ago

improve more

improve more - 2 years, 9 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...