Expand to seek trouble

Algebra Level 5

( a x ) 2 ( a y ) 2 ( a z ) 2 ( b x ) 2 ( b y ) 2 ( b z ) 2 ( c x ) 2 ( c y ) 2 ( c z ) 2 = 351 8 {\left| \begin{matrix} { \left( a-x \right) }^{ 2 } & { \left( a-y \right) }^{ 2 } & { \left( a-z \right) }^{ 2 } \\ { \left( b-x \right) }^{ 2 } & { \left( b-y \right) }^{ 2 } & { \left( b-z \right) }^{ 2 } \\ { \left( c-x \right) }^{ 2 } & { \left( c-y \right) }^{ 2 } & { \left( c-z \right) }^{ 2 } \end{matrix} \right| =-\frac { 351 }{ 8 } }

If x , y , z x,y,z are roots of the equation 8 X 3 62 X 2 + 43 X 7 = 0 {8X^3-62X^2+43X-7=0} , and they satisfy the determinant above, where a , b a,b and c c are distinct numbers, find the value of ( a b ) ( b c ) ( c a ) |(a-b)(b-c)(c-a)| .


The answer is 2.00.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Tanishq Varshney
Nov 13, 2015

The roots of the equation are 7 , 1 2 , 1 4 7,\frac{1}{2},\frac{1}{4}

And the determinant can be rewritten as

a 2 2 a 1 b 2 2 b 1 c 2 2 c 1 × 1 x x 2 1 y y 2 1 z z 2 \large{\left| \begin{matrix} { a }^{ 2 } & -2a & { 1 } \\ { b }^{ 2 } & -2b & 1 \\ { c }^{ 2 } & -2c & 1 \end{matrix} \right| \times \left| \begin{matrix} 1 & x & { x }^{ 2 } \\ 1 & y & { y }^{ 2 } \\ 1 & z & { z }^{ 2 } \end{matrix} \right| }

(Row to Row multiplication)

Well known determinants

This evaluates to 2 ( a b ) ( b c ) ( c a ) ( x y ) ( y z ) ( z x ) \large{2(a-b)(b-c)(c-a)(x-y)(y-z)(z-x)}

hence,

( a b ) ( b c ) ( c a ) = 2 \large{(a-b)(b-c)(c-a)=2}

Lovely problem involving an interesting factorization and good use of the Vandermonde Determinant! (+1 and liked)

I think you should ask for the absolute value of ( a b ) ( b c ) ( c a ) (a-b)(b-c)(c-a) ; the product could be 2 -2 as well. Also, it is not necessary to require that a , b a,b and c c are distinct.

Otto Bretscher - 5 years, 7 months ago

Log in to reply

Thank you sir , edited!

Tanishq Varshney - 5 years, 7 months ago

Just one small doubt , how could one get 2 -2 . Could u elaborate plz?

Tanishq Varshney - 5 years, 7 months ago

Log in to reply

It depends on the order in which you write the roots: Let a = 1 , b = 0 , c = 2 , x = 7 , y = 1 / 4 , z = 1 / 2 a=1,b=0,c=2,x=7,y=1/4,z=1/2 , for example.

Otto Bretscher - 5 years, 7 months ago

Log in to reply

@Otto Bretscher Okay, thank u once again.

Tanishq Varshney - 5 years, 7 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...