Exponential battle between two years!

Algebra Level 1

4 2020 4 2019 = ? \Large{{\color{#20A900}{4}}^{\color{#3D99F6}{2020}}-{\color{#20A900}{4}}^{\color{#3D99F6}{2019}}= \color{#624F41}{?}}

Inspiration

4 2019 × 2 4^{2019} \times 2 4 2018 × 5 4^{2018} \times 5 4 2018 × 3 4^{2018} \times 3 4 2019 4^{2019} 4 2019 × 3 4^{2019} \times 3

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Sin Ndt
Jul 3, 2020

4 2020 4^{2020} - 4 2019 4^{2019}

= 4 2019 4^{2019} x 4 4 - 4 2019 4^{2019} x 1 1

= 4 2019 4^{2019} x ( 4 1 4 - 1 )

= 4 2019 4^{2019} x 3 3

In generality we also have:

4 n + 1 4^{n + 1} - 4 n 4^n

= 4 n 4^{n} x 4 4 - 4 n 4^{n} x 1 1

= 4 n 4^{n} x ( 4 1 4 - 1 )

= 4 n 4^{n} x 3 3

AND:

A n + 1 A^{n + 1} - A n A^{n}

= A n A^{n} x A A - A n A^{n} x 1 1

= A n A^{n} x ( A 1 A - 1 )

4 2020 4 2019 = 4 2019 × ( 4 1 ) = 4 2019 × 3 \Large{{\color{#20A900}{4}}^{\color{#3D99F6}{2020}}-{\color{#20A900}{4}}^{\color{#3D99F6}{2019}}= {\color{#20A900}{4}}^{\color{#3D99F6}{2019}} \times (4-1) =\boxed{{\color{#20A900}{4}}^{\color{#3D99F6}{2019}}\times 3 }}

Great! But I don't understand where did you get the ( 4 1 4 - 1 ) from?

Yajat Shamji - 11 months, 2 weeks ago

Log in to reply

Well, 4 2020 = 4 ( 4 2019 ) , 4^{2020}=4(4^{2019}), hence there is a 4 4 .

Jeff Giff - 11 months, 2 weeks ago

Log in to reply

Then where do you get the 1 - 1 from in the ( 4 1 4 - 1 )?

Yajat Shamji - 11 months, 2 weeks ago

Log in to reply

@Yajat Shamji @Yajat Shamji He took 4 2019 4^{2019} common

Aaghaz Mahajan - 11 months, 2 weeks ago

Log in to reply

@Aaghaz Mahajan Ok. Thanks a lot. Now I understand.

Yajat Shamji - 11 months, 2 weeks ago

4 2020 4 2019 = 4 ( 4 2019 ) 1 ( 4 2019 ) = ( 4 1 ) 4 2019 4^{2020}-4^{2019}=\color{#D61F06}4\color{#333333}(4^{2019})\color{#3D99F6}-1\color{#333333}(4^{2019})=(\color{#D61F06}4\color{#3D99F6}-1\color{#333333})4^{2019} :)

Jeff Giff - 11 months, 2 weeks ago

Log in to reply

@Jeff Giff Ok. Thanks a lot. Now I understand.

Yajat Shamji - 11 months, 2 weeks ago

@Jeff Giff A minor typo, you wrote 4 2 019 4^{2}019 instead of 4 2019 4^{2019}

Aaghaz Mahajan - 11 months, 2 weeks ago

solve it with the same way

Razing Thunder - 11 months, 2 weeks ago
Lâm Lê
Sep 9, 2020

4 2020 4 2019 = 4 4 2020 4 2019 = 3 × 4 2019 64 Duoquadrigentillion (Give or take a few) \frac{4^{2020}}{4^{2019}}=4\Rightarrow4^{2020}-4^{2019}=\boxed{\color{#20A900}3×4^{2019}}\approx64 \text{ Duoquadrigentillion (Give or take a few)}

1 pending report

Vote up reports you agree with

×

Problem Loading...

Note Loading...

Set Loading...