Extreme Ratios

Geometry Level 5

In the given figure, X X is a variable point on a line which is equally inclined to the segments A O AO and B O BO .

Let A O = a AO=a , B O = b BO=b and x = A X B X x=\dfrac{AX}{BX} .

Find the product of the minimum and the maximum value of x x .

b a \dfrac{b}{a} a b \dfrac{a}{b} b 2 a 2 \dfrac{b^2}{a^2} a 2 b 2 \dfrac{a^2}{b^2}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Mark Hennings
Aug 6, 2020

If we reflect point B B in the line L \mathcal{L} , we obtain B B' where A A , O O and B B' are collinear, and the ratios A X X B \frac{AX}{XB} and A X X B \frac{AX}{XB'} are equal. The locus of the set of points X X for which A X X B \frac{AX}{XB'} is a given constant k k is a circle in which A A and B B' are mutually inverse points (except when k = 1 k=1 , in which case the locus is the perpendicular bisector of A B AB' ). Thus, to extremize x = A X X B = A X X B x = \frac{AX}{XB} = \frac{AX}{XB'} , we need to find the two such circles which are tangent to the given line L \mathcal{L} . Let θ \theta be the common angle of incidence of A O AO and B O BO to the line L \mathcal{L} .

The first of these circles has centre C 1 C_1 on the extended line A B AB' , and has radius R R where ( R csc θ a ) ( R csc θ + b ) = R 2 R 2 cot 2 θ ( a b ) R csc θ a b = 0 \begin{aligned} (R\csc\theta - a)(R\csc\theta + b) & = \; R^2 \\ R^2\cot^2\theta -(a-b)R\csc\theta - ab & = \; 0 \end{aligned} while the second circle has centre C 2 C_2 on the extended line A B AB' and radius S S where ( S csc θ + a ) ( S csc θ b ) = S 2 S 2 cot 2 θ + ( a b ) R csc θ a b = 0 \begin{aligned} (S\csc\theta + a)(S\csc\theta - b) & = \; S^2 \\ S^2\cot^2\theta +(a-b)R\csc\theta - ab & = \; 0 \end{aligned} and hence R = sec θ [ X + 1 2 ( a b ) tan θ ] S = sec θ [ X 1 2 ( a b ) tan θ ] R \; = \; \sec\theta\big[X + \tfrac12(a-b)\tan\theta\big] \hspace{2cm} S \; = \; \sec\theta\big[X - \tfrac12(a-b)\tan\theta\big] where X = 1 2 ( a b ) 2 tan 2 θ + 4 a b sin 2 θ X \; =\; \tfrac12\sqrt{(a-b)^2\tan^2\theta + 4ab\sin^2\theta} so that R S = a b tan 2 θ R S = ( a b ) tan θ sec θ RS \; = \; ab\tan^2\theta \hspace{2cm} R-S \; = \; (a-b)\tan\theta\,\sec\theta The extreme values of x x are obtained when the point X X is at either X 1 X_1 or X 2 X_2 , the points of tangency of these circles with the line L \mathcal{L} , and hence x 1 = R csc θ a R x 2 = S S csc θ b = S csc θ + a S x_1 \; = \; \frac{R\csc\theta - a}{R} \hspace{2cm} x_2 \; =\; \frac{S}{S\csc\theta-b} \; =\; \frac{S\csc\theta + a}{S} so that x 1 x 2 = ( R csc θ a ) ( S csc θ + a ) R S = R S csc 2 θ + a ( R S ) csc θ a 2 R S = a b x_1x_2 \; =\; \frac{(R\csc\theta - a)(S\csc\theta + a)}{RS} \; = \; \frac{RS\csc^2\theta + a(R-S)\csc\theta - a^2}{RS} \; = \; \boxed{\frac{a}{b}}


Now let's work the problem the other way. Suppose that X 1 , X 2 X_1,X_2 are the excentres of the triangle O A B OAB opposite B B and A A respectively. Then X 1 X_1 , O O and X 2 X_2 are collinear, all lying on the line L \mathcal{L} . Let C 1 C_1 and C 2 C_2 be the intersections with the line A O B AOB' with the lines perpendicular to L \mathcal{L} passing through X 1 X_1 and X 2 X_2 respectively.

Now X 2 X_2 is on the angle bisector of O A B \angle OAB , so O A X 2 = B A X 2 = α \angle OAX_2 = \angle BAX_2 = \alpha . Moreover X 1 X_1 is on the angle bisector of O B A \angle OBA , so O B X 1 = A B X 1 = β \angle OBX_1 = \angle ABX_1 = \beta . Moreover O A X 1 = 9 0 α \angle OAX_1 = 90^\circ - \alpha and O B X 2 = 9 0 β \angle OBX_2 = 90^\circ - \beta , so we deduce that X 1 A X 2 = X 1 B X 2 = 9 0 \angle X_1AX_2 = \angle X_1BX_2 = 90^\circ . Thus we deduce that X 1 , X 2 , A , B X_1,X_2,A,B are concyclic, with the centre of the circumcircle lying on the line L \mathcal{L} , which means that B B' also lies on this circle. Thus we deduce that B X 1 X 2 = X 2 X 1 B = α \angle BX_1X_2 = \angle X_2X_1B' = \alpha and X 1 B A = X 1 X 2 A = β X_1B'A = X_1X_2A = \beta , while B O X 2 = α + β \angle B'OX_2 = \alpha +\beta .

Since A X 1 B = 9 0 α β \angle AX_1B = 90^\circ - \alpha - \beta , we deduce that C 1 X 1 A = β \angle C_1X_1A = \beta . This means that triangles C 1 A X 1 C_1AX_1 and C 1 X 1 B C_1X_1B' are similar, which implies that C 1 A × C 1 B = C 1 X 1 2 C_1A \times C_1B' = C_1X_1^2 , and hence that A , B A,B' are mutually inverse in the circle with centre C 1 C_1 that passes through X 1 X_1 (which is therefore tangent to L \mathcal{L} .

Since O B X 2 = 9 0 β \angle OB'X_2 = 90^\circ - \beta , we see that O X 2 B = 9 0 α \angle OX_2B' = 90^\circ - \alpha , so that B X 2 C 2 = α \angle B'X_2C_2 = \alpha . This means that the triangles C 2 B X 2 C_2B'X_2 and C 2 X 2 A C_2X_2A are similar, which implies that C 2 A × C 2 B = C 2 X 2 2 C_2A \times C_2B' = C_2X_2^2 , and hence that A , B A,B' are mutually inverse in the circle with centre C 2 C_2 that passes through X 2 X_2 (which is therefore tangent to L \mathcal{L} ). Thus the points X 1 , X 2 , C 1 , C 2 X_1,X_2,C_1,C_2 are the same as the ones previously defined. The Sine Rule now gives A X 1 sin β = B X 1 sin ( 9 0 + α ) = B X 1 cos α A X 2 cos β = A X 2 sin ( 9 0 + β ) = B X 2 sin α \frac{AX_1}{\sin\beta} = \frac{BX_1}{\sin(90^\circ+\alpha)} = \frac{BX_1}{\cos\alpha} \hspace{2cm} \frac{AX_2}{\cos\beta} = \frac{AX_2}{\sin(90^\circ+\beta)} = \frac{BX_2}{\sin\alpha} and hence x 1 = A X 1 B X 1 = sin β cos α x 2 = A X 2 B X 2 = cos β sin α x_1 \; = \; \frac{AX_1}{BX_1} = \frac{\sin\beta}{\cos\alpha} \hspace{2cm} x_2 \; = \; \frac{AX_2}{BX_2} = \frac{\cos\beta}{\sin\alpha} so that x 1 x 2 = sin β cos β sin α cos α = sin 2 β sin 2 α = O A O B = a b x_1x_2 \; = \; \frac{\sin\beta\cos\beta}{\sin\alpha\cos\alpha} \; =\; \frac{\sin2\beta}{\sin2\alpha} \; = \; \frac{OA}{OB} \; =\; \frac{a}{b}

Denote O A B \angle OAB , O B A \angle OBA , by A \angle A and B \angle B respectively.
Denote the length of A B AB by c c , the directed length of O X OX by t t and the measures of the noted angles by θ \theta and ϕ \phi (figure 1).

figure 1 figure 1 By cosine rule on triangles O A X \triangle OAX , O B X \triangle OBX we have
A X 2 = t 2 2 a t cos θ + a 2 A{{X}^{2}}={{t}^{2}}-2at\cos \theta +{{a}^{2}} , B X 2 = t 2 2 b t cos ( π θ ) + b 2 B X 2 = t 2 + 2 b t cos θ + b 2 B{{X}^{2}}={{t}^{2}}-2bt\cos \left( \pi -\theta \right)+{{b}^{2}}\Rightarrow B{{X}^{2}}={{t}^{2}}+2bt\cos \theta +{{b}^{2}} .

It is sufficient to find the extrema of the function f ( t ) : = A X 2 B X 2 = t 2 2 a t cos θ + a 2 t 2 + 2 b t cos θ + b 2 f\left( t \right):=\dfrac{A{{X}^{2}}}{B{{X}^{2}}}=\dfrac{{{t}^{2}}-2at\cos \theta +{{a}^{2}}}{{{t}^{2}}+2bt\cos \theta +{{b}^{2}}} .
The derivative of f f is given by f ( t ) = 2 ( a + b ) [ cos θ t 2 ( a b ) t a b cos θ ] ( t 2 + 2 b t cos θ + b 2 ) 2 {f}'\left( t \right)=\dfrac{2\left( a+b \right)\left[ \cos \theta \cdot {{t}^{2}}-\left( a-b \right)\cdot t-ab\cos \theta \right]}{{{\left( {{t}^{2}}+2bt\cos \theta +{{b}^{2}} \right)}^{2}}} The zeros of f {f}' are the roots of the quadratic cos θ t 2 ( a b ) t a b cos θ \cos \theta \cdot {{t}^{2}}-\left( a-b \right)\cdot t-ab\cos \theta , who’s discriminant is
Δ = ( a b ) 2 + 4 a b cos 2 θ = a 2 + b 2 + 2 a b ( 2 cos 2 θ 1 ) = a 2 + b 2 + 2 a b cos ( 2 θ ) = a 2 + b 2 + 2 a b cos ( π φ ) = a 2 + b 2 2 a b cos φ = c 2 \begin{aligned} \Delta & ={{\left( a-b \right)}^{2}}+4ab{{\cos }^{2}}\theta \\ & ={{a}^{2}}+{{b}^{2}}+2ab\left( 2{{\cos }^{2}}\theta -1 \right) \\ & ={{a}^{2}}+{{b}^{2}}+2ab\cos \left( 2\theta \right) \\ & ={{a}^{2}}+{{b}^{2}}+2ab\cos \left( \pi -\varphi \right) \\ & ={{a}^{2}}+{{b}^{2}}-2ab\cos \varphi \\ & ={{c}^{2}} \\ \end{aligned} Hence, f f is extremal when t = a b + c 2 cos θ = s b cos θ : = t 1 o r t = a b c 2 cos θ = s a cos θ : = t 2 ( 1 ) t=\dfrac{a-b+c}{2\cos \theta }=\dfrac{s-b}{\cos \theta }\text{:}={{t}_{1}} \ \ \ \ \ or \ \ \ \ \ t=\dfrac{a-b-c}{2\cos \theta }=-\dfrac{s-a}{\cos \theta }\text{:}={{t}_{2}} \ \ \ \ \ \ \ (1) where s = a + b + c 2 s=\dfrac{a+b+c}{2} is the semiperimeter of O A B \triangle OAB .

figure 2 figure 2

Now, consider the excircle ( I B , I B Y 1 ) \left( {{I}_{B}},{{I}_{B}}{{Y}_{1}} \right) of O A B \triangle OAB tangent to the sides B O BO , B A BA at Y 1 {{Y}_{1}} and Y 2 {{Y}_{2}} respectively (figure 2).
Then, B Y 1 = B Y 2 = 1 2 ( a + b + c ) = s B{{Y}_{1}}=B{{Y}_{2}}=\dfrac{1}{2}\left( a+b+c \right)=s Thus, O Y 1 = s b = t 1 cos θ \left| \overline{O{{Y}_{1}}} \right|=s-b={{t}_{1}}\cos \theta Likewise, if the excircle ( I A , I A Z 1 ) \left( {{I}_{A}},{{I}_{A}}{{Z}_{1}} \right) on O B OB is tangent to the sides A O AO , A B AB at Z 1 {{Z}_{1}} and Z 2 {{Z}_{2}} respectively, then O Z 1 = s a = t 2 cos θ \left| \overline{O{{Z}_{1}}} \right|=s-a=-{{t}_{2}}\cos \theta

Therefore, according to ( 1 ) (1) , the extremal values of f f occur when the point X X coinsides with the excenters I B {{I}_{B}} and I A {{I}_{A}} , whose projections on the lines B O BO and A O AO are Y 1 {{Y}_{1}} and Z 1 {{Z}_{1}} respectively.

Now, by sine rule on triangles I A A B \triangle {{I}_{A}}AB and I B A B \triangle {{I}_{B}}AB , it is easy to see that I B A I B B = sin B 2 sin ( A + π A 2 ) = sin B 2 cos A 2 a n d I A A I A B = sin ( π π B 2 ) sin A 2 = cos B 2 sin A 2 \dfrac{{{I}_{B}}A}{{{I}_{B}}B}=\dfrac{\sin \dfrac{B}{2}}{\sin \left( A+\dfrac{\pi -A}{2} \right)}=\dfrac{\sin \dfrac{B}{2}}{\cos \dfrac{A}{2}} \ \ \ \ \ and \ \ \ \ \ \dfrac{{{I}_{A}}A}{{{I}_{A}}B}=\dfrac{\sin \left( \pi -\dfrac{\pi -B}{2} \right)}{\sin \dfrac{A}{2}}=\dfrac{\cos \dfrac{B}{2}}{\sin \dfrac{A}{2}}

Consequently, the required product of the minimum and the maximum value of the ratio x = X A X B x=\dfrac{XA}{XB} is I B A I B B I A A I A B = sin B 2 cos A 2 cos B 2 sin A 2 = sin B sin A = a b . \dfrac{{{I}_{B}}A}{{{I}_{B}}B}\cdot \dfrac{{{I}_{A}}A}{{{I}_{A}}B}=\dfrac{\sin \dfrac{B}{2}}{\cos \dfrac{A}{2}}\cdot \dfrac{\cos \dfrac{B}{2}}{\sin \dfrac{A}{2}}=\dfrac{\sin B}{\sin A}=\boxed{\dfrac{a}{b}}.

David Vreken
Aug 1, 2020

Let p = O X p = OX , θ \theta be one of the blue angles, and c = cos θ c = \cos \theta .

By the law of cosines on O X A \triangle OXA , A X = p 2 + a 2 2 a p cos θ = p 2 + a 2 2 a p c AX = \sqrt{p^2 + a^2 - 2ap \cos \theta} = \sqrt{p^2 + a^2 - 2apc} , and by the law of cosines on O X B \triangle OXB , B X = p 2 + b 2 2 b p cos ( 180 ° θ ) = p 2 + b 2 + 2 b p c BX = \sqrt{p^2 + b^2 - 2bp \cos (180° - \theta)} = \sqrt{p^2 + b^2 + 2bpc} , so x = A X B X = p 2 + a 2 2 a p c p 2 + b 2 + 2 b p c x = \frac{AX}{BX} = \frac{\sqrt{p^2 + a^2 - 2apc}}{\sqrt{p^2 + b^2 + 2bpc}} .

For the maximum and minimum values of x x , d x d p = ( a + b ) ( c p 2 ( a b ) p a b c ) ( p 2 2 a c p + a 2 ) ( p 2 + 2 b p + b 2 ) 3 = 0 \frac{dx}{dp} = \frac{(a + b)(cp^2 - (a - b)p - abc)}{\sqrt{(p^2 - 2acp + a^2)(p^2 + 2bp + b^2)^3}} = 0 , which solves to p = a b ± ( a b ) 2 + 4 a b c 2 2 c p = \frac{a - b \pm \sqrt{(a - b)^2 + 4abc^2}}{2c} .

Substituting these p p values back into x x gives maximum and minimum values of x = a 2 + 2 a b c 2 + b 2 ± ( a + b ) ( a b ) 2 + 4 a b c 2 2 b 2 ( 1 c 2 ) x = \sqrt{\frac{a^2 + 2abc^2 + b^2 \pm (a + b)\sqrt{(a - b)^2 + 4abc^2}}{2b^2(1 - c^2)}} .

The product P P of the maximum and minimum values of x x is therefore:

P = a 2 + 2 a b c 2 + b 2 + ( a + b ) ( a b ) 2 + 4 a b c 2 2 b 2 ( 1 c 2 ) a 2 + 2 a b c 2 + b 2 ( a + b ) ( a b ) 2 + 4 a b c 2 2 b 2 ( 1 c 2 ) = ( a 2 + 2 a b c 2 + b 2 ) 2 ( a + b ) 2 ( ( a b ) 2 + 4 a b c 2 ) 2 b 2 ( 1 c 2 ) = 2 a b ( 1 c 2 ) 2 b 2 ( 1 c 2 ) = a b P = \sqrt{\frac{a^2 + 2abc^2 + b^2 + (a + b)\sqrt{(a - b)^2 + 4abc^2}}{2b^2(1 - c^2)}} \cdot \sqrt{\frac{a^2 + 2abc^2 + b^2 - (a + b)\sqrt{(a - b)^2 + 4abc^2}}{2b^2(1 - c^2)}} = \frac{\sqrt{(a^2 + 2abc^2 + b^2)^2 - (a + b)^2((a - b)^2 + 4abc^2)}}{2b^2(1 - c^2)} = \frac{2ab(1 - c^2)}{2b^2(1 - c^2)} = \boxed{\frac{a}{b}} .

This question is very much related to triangle geometry. The extreme points are notable points for triangle O A B OAB . Can you figure out what they are?

Digvijay Singh - 10 months, 2 weeks ago

Log in to reply

I solved the same way as @David Vreken . Now I see that these extreme points are the excenters of O A B \triangle OAB that correspond to the sides O A OA and O B OB . Although, I'm still trying to figure out the reason for this coincidence. Give us some time :)

Thanos Petropoulos - 10 months, 2 weeks ago

Log in to reply

try this problem

Digvijay Singh - 10 months, 2 weeks ago

I hadn't noticed that they were excenters. Nice observation!

David Vreken - 10 months, 1 week ago

Log in to reply

@David Vreken @Digvijay Singh Thank you, it was very helpful!

Thanos Petropoulos - 10 months, 1 week ago

Log in to reply

@Thanos Petropoulos @David Vreken @Digvijay Singh @Thanos Petropoulos You might like to look at the (new) second half of my proof, which gives an entirely geometric proof of this result.

Mark Hennings - 10 months, 1 week ago

Log in to reply

@Mark Hennings Excellent geometric approach!

Thanos Petropoulos - 10 months, 1 week ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...