Factorial Log

Algebra Level 1

1 log 2 100 ! + 1 log 3 100 ! + 1 log 4 100 ! + + 1 log 100 100 ! = ? \frac{1}{\log_{2}{100!}}+\frac{1}{\log_{3}{100!}}+\frac{1}{\log_{4}{100!}}+\ldots+\frac{1}{\log_{100}{100!}}= \ ?


The answer is 1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

9 solutions

Paola Ramírez
Jan 10, 2015

1 log 2 100 ! = 1 log 100 ! l o g 2 = log 2 log 100 ! \frac{1}{\log_{2}{100!}}=\frac{1}{\frac{\log{100!}}{log{2}}}=\frac{\log {2}}{\log {100!}}

So

1 log 2 100 ! + 1 log 3 100 ! + 1 l o g 4 100 ! + . . . + 1 log 100 100 ! = log 2 log 100 ! + log 3 log 100 ! + log 4 log 100 ! + . . . + log 100 log 100 ! \frac{1}{\log_{2}{100!}}+\frac{1}{\log_{3}{100!}}+\frac{1}{log_{4}{100!}}+...+\frac{1}{\log_{100}{100!}}=\frac{\log {2}}{\log {100!}}+\frac{\log {3}}{\log {100!}}+\frac{\log {4}}{\log {100!}}+...+\frac{\log {100}}{\log {100!}}

By the Properties of Logarithms , log A + log B = log A B \log A+ \log B=\log AB

log 2 log 100 ! + log 3 log 100 ! + log 4 log 100 ! + . . . + log 100 log 100 ! = log 100 ! log 100 ! = 1 \frac{\log {2}}{\log {100!}}+\frac{\log {3}}{\log {100!}}+\frac{\log {4}}{\log {100!}}+...+\frac{\log {100}}{\log {100!}}=\frac{\log{100!}}{\log{100!}}=\boxed{1}

i didn't understand the relation between last 2 steps could you explain it to me?

Nada Zohiery - 6 years, 5 months ago

Log in to reply

First step you use a chage base property log a N = log N log a \log_a{N}=\frac{\log N}{\log a}

Seconds step: apply step 1 at all terms of the original.

Third step: As all fractions have the same denominator you can sum it like: log 1 + log 2 + log 3 + . . . + log 100 l o g 100 ! \frac{\log {1}+\log{2}+\log{3}+...+\log{100}}{log 100!}

Step 4: Apply property sum-product of logarithms

Paola Ramírez - 6 years, 5 months ago

Very nice solution

ameya aglawe - 5 years ago

how is (2 3 4*.......100)=100?

Jesse Bolt - 4 years, 10 months ago
Cid Moraes
Jan 13, 2015

Remember that 1 log 2 100 ! = log 100 ! 2 \frac{1}{\log_2 {100!}}=\log_{100!}2 by the base change formula log b a = log x a log x b \log_ba=\frac{\log_xa}{\log_xb} . Apply this idea all over. You will end up in this log 100 ! 2 + log 100 ! 3 + + log 100 ! 100 = log 100 ! ( 2 3 100 ) = log 100 ! 100 ! = 1 \log_{100!}2+\log_{100!}3+\cdots+\log_{100!}100=\log_{100!}{(2\cdot3\cdots 100)}=\log_{100!}{100!}=1

Nice solution!

Paola Ramírez - 6 years, 5 months ago

Log in to reply

Good and marvelous solution by my fellow citycen... We must learn with him...

Heder Oliveira Dias - 6 years, 5 months ago

@Cid Moraes But why have you used x & z (in the formula)?Shouldn't it be either x or z?

Yuki Kuriyama - 5 years, 5 months ago
Chinmay Modi
Jan 16, 2015

You can also remember the formula log b a = 1 log a b \log_b a = \frac{1}{\log_a b} Which in turn makes this question into log 100 ! 2 + log 100 ! 3 + log 100 ! 4 + + log 100 ! 100 \log_{100!}{2}+\log_{100!}{3}+\log_{100!}{4}+\ldots+\log_{100!}{100} = l o g 100 ! ( 2 3 4 100 ) =log_{100!}{(2*3*4\ldots*100)} = l o g 100 ! 100 ! =log_{100!}{100!} = 1 =1

Bloons Qoth
Aug 21, 2016

1 log 2 100 ! + 1 log 3 100 ! + 1 log 4 100 ! + + 1 log 100 100 ! = ? \frac{1}{\log_{2}{100!}}+\frac{1}{\log_{3}{100!}}+\frac{1}{\log_{4}{100!}}+\ldots+\frac{1}{\log_{100}{100!}}= \ ?

log 2 2 log 2 100 ! + log 3 3 log 3 100 ! + log 4 4 log 4 100 ! + + log 100 100 log 100 100 ! \frac{\log_{2}{2}}{\log_{2}{100!}}+\frac{\log_{3}{3}}{\log_{3}{100!}}+\frac{\log_{4}{4}}{\log_{4}{100!}}+\ldots+\frac{\log_{100}{100}}{\log_{100}{100!}}

Because log a b log a c = log c b \text{Because} \quad \color{#302B94}{\frac{\log_{a}{b}}{\log_{a}{c}}=\log_{c}{b}}

log 100 ! 2 + log 100 ! 3 + log 100 ! 4 + + log 100 ! 100 \large\log_{100!}{2}+\log_{100!}{3}+\log_{100!}{4}+\cdots+\log_{100!}{100}

Using the Law of Logarithm, log M N = log M + log N \text{Using the} \, \color{#3D99F6}{\text{Law of Logarithm,}} \, \color{#302B94}{\log MN=\log M+\log N}

log 100 ! ( 2 3 4 100 ) \large\log_{100!}{\color{#D61F06}{\big(2*3*4*\cdots *100)}}

log 100 ! 100 ! \large\log_{100!}{\color{#D61F06}{100!}}

1 \large\implies\color{#302B94}{\boxed{1}}

Divya V
Apr 2, 2015

Good Solution

Savira Utami
Mar 9, 2015

summary log 100!/100! = 1

Anna Anant
Jan 15, 2015

log y base x gives us log y / logx ,we here have the 1/ log 100! base n , thus we get 1/log100! [ log2 + log3 + ..... log100 ] , since logarithms are added then resultant logarithm is multiplication of the terms , then we get log100!/log100! = 1

Abhishek Mondal
Jan 15, 2015

1/log2(100!) + 1/log3(100!) + 1/log4(100!) +............+1/log100(100!) = log(2)/log(100!) +log(3)/log(100!) + log(4)/log(100!) +..........+ log(100)/log(100!) =(log(2) + log(3) + log(4) +.........+ log(100))/log(100!) As log(A) + log(B) = log(AB); =log(2 3 4 ..... 100)/log(100!) =log(100!)/log(100!) =1

convert to natural log, log(base2)100!=ln2/ln100! and so on! so denominator becomes ln100! and numerator is ln2+ln3+ln4+.....+ln100=ln(2 3 4...*100)=ln 100 factorial GONDEN RULE: log(base A)B = 1/log(base B)A

You don't have to do natural log...lol

Hobart Pao - 6 years, 5 months ago

Log in to reply

I don't get you!

Agastya Chandrakant - 6 years, 5 months ago

Log in to reply

What i'm saying is that you overcomplicated the problem. You don't have to change the base to e, just use 100! as the base

Hobart Pao - 6 years, 4 months ago

Log in to reply

@Hobart Pao Maybe; as age increases, experiences to increases! i am still 16 in 12th grade. that too smallest in my class. but i will remember this tip! Thanks. (but my solution isn't wrong, is it?

Agastya Chandrakant - 6 years, 4 months ago

Log in to reply

@Agastya Chandrakant I'm a 17 year old in Bronx High School of Science. My age is faked so there are no facebook restrictions!

Hobart Pao - 6 years, 4 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...