lo g 2 1 0 0 ! 1 + lo g 3 1 0 0 ! 1 + lo g 4 1 0 0 ! 1 + … + lo g 1 0 0 1 0 0 ! 1 = ?
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
i didn't understand the relation between last 2 steps could you explain it to me?
Log in to reply
First step you use a chage base property lo g a N = lo g a lo g N
Seconds step: apply step 1 at all terms of the original.
Third step: As all fractions have the same denominator you can sum it like: l o g 1 0 0 ! lo g 1 + lo g 2 + lo g 3 + . . . + lo g 1 0 0
Step 4: Apply property sum-product of logarithms
Very nice solution
how is (2 3 4*.......100)=100?
Remember that lo g 2 1 0 0 ! 1 = lo g 1 0 0 ! 2 by the base change formula lo g b a = lo g x b lo g x a . Apply this idea all over. You will end up in this lo g 1 0 0 ! 2 + lo g 1 0 0 ! 3 + ⋯ + lo g 1 0 0 ! 1 0 0 = lo g 1 0 0 ! ( 2 ⋅ 3 ⋯ 1 0 0 ) = lo g 1 0 0 ! 1 0 0 ! = 1
Nice solution!
Log in to reply
Good and marvelous solution by my fellow citycen... We must learn with him...
@Cid Moraes But why have you used x & z (in the formula)?Shouldn't it be either x or z?
You can also remember the formula lo g b a = lo g a b 1 Which in turn makes this question into lo g 1 0 0 ! 2 + lo g 1 0 0 ! 3 + lo g 1 0 0 ! 4 + … + lo g 1 0 0 ! 1 0 0 = l o g 1 0 0 ! ( 2 ∗ 3 ∗ 4 … ∗ 1 0 0 ) = l o g 1 0 0 ! 1 0 0 ! = 1
lo g 2 1 0 0 ! 1 + lo g 3 1 0 0 ! 1 + lo g 4 1 0 0 ! 1 + … + lo g 1 0 0 1 0 0 ! 1 = ?
lo g 2 1 0 0 ! lo g 2 2 + lo g 3 1 0 0 ! lo g 3 3 + lo g 4 1 0 0 ! lo g 4 4 + … + lo g 1 0 0 1 0 0 ! lo g 1 0 0 1 0 0
Because lo g a c lo g a b = lo g c b
lo g 1 0 0 ! 2 + lo g 1 0 0 ! 3 + lo g 1 0 0 ! 4 + ⋯ + lo g 1 0 0 ! 1 0 0
Using the Law of Logarithm, lo g M N = lo g M + lo g N
lo g 1 0 0 ! ( 2 ∗ 3 ∗ 4 ∗ ⋯ ∗ 1 0 0 )
lo g 1 0 0 ! 1 0 0 !
⟹ 1
log y base x gives us log y / logx ,we here have the 1/ log 100! base n , thus we get 1/log100! [ log2 + log3 + ..... log100 ] , since logarithms are added then resultant logarithm is multiplication of the terms , then we get log100!/log100! = 1
1/log2(100!) + 1/log3(100!) + 1/log4(100!) +............+1/log100(100!) = log(2)/log(100!) +log(3)/log(100!) + log(4)/log(100!) +..........+ log(100)/log(100!) =(log(2) + log(3) + log(4) +.........+ log(100))/log(100!) As log(A) + log(B) = log(AB); =log(2 3 4 ..... 100)/log(100!) =log(100!)/log(100!) =1
convert to natural log, log(base2)100!=ln2/ln100! and so on! so denominator becomes ln100! and numerator is ln2+ln3+ln4+.....+ln100=ln(2 3 4...*100)=ln 100 factorial GONDEN RULE: log(base A)B = 1/log(base B)A
You don't have to do natural log...lol
Log in to reply
I don't get you!
Log in to reply
What i'm saying is that you overcomplicated the problem. You don't have to change the base to e, just use 100! as the base
Log in to reply
@Hobart Pao – Maybe; as age increases, experiences to increases! i am still 16 in 12th grade. that too smallest in my class. but i will remember this tip! Thanks. (but my solution isn't wrong, is it?
Log in to reply
@Agastya Chandrakant – I'm a 17 year old in Bronx High School of Science. My age is faked so there are no facebook restrictions!
Problem Loading...
Note Loading...
Set Loading...
lo g 2 1 0 0 ! 1 = l o g 2 lo g 1 0 0 ! 1 = lo g 1 0 0 ! lo g 2
So
lo g 2 1 0 0 ! 1 + lo g 3 1 0 0 ! 1 + l o g 4 1 0 0 ! 1 + . . . + lo g 1 0 0 1 0 0 ! 1 = lo g 1 0 0 ! lo g 2 + lo g 1 0 0 ! lo g 3 + lo g 1 0 0 ! lo g 4 + . . . + lo g 1 0 0 ! lo g 1 0 0
By the Properties of Logarithms , lo g A + lo g B = lo g A B
lo g 1 0 0 ! lo g 2 + lo g 1 0 0 ! lo g 3 + lo g 1 0 0 ! lo g 4 + . . . + lo g 1 0 0 ! lo g 1 0 0 = lo g 1 0 0 ! lo g 1 0 0 ! = 1