Fee, ϕ \phi , Fo, Fum

Algebra Level 3

Given that x + x 1 = 1 + 5 2 x+x^{-1}=\frac{1+\sqrt{5}}{2} , find x 2000 + x 2000 x^{2000}+x^{-2000} .


The answer is 2.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

8 solutions

x + 1 x = ϕ x + \frac{1}{x} = \phi

x 2 + 1 x 2 + 2 = ϕ 2 x^2 + \frac{1}{x^2} + 2 = \phi^2

x 2 + 1 x 2 + 2 = ϕ + 1 x^2 + \frac{1}{x^2} + 2 = \phi + 1 (By Properties of ϕ \phi )

x 2 + 1 x 2 + 1 = x + 1 x x^2 + \frac{1}{x^2} + 1 = x + \frac{1}{x}

x 2 x + 1 1 x + 1 x 2 = 0 x^2 - x + 1 - \frac{1}{x} + \frac{1}{x^2} = 0

x 4 x 3 + x 2 x + 1 = 0 x^4 - x^3 + x^2 - x + 1 = 0

x 5 + 1 x + 1 = 0 \dfrac{x^5 + 1}{x + 1} = 0 , Note that ( x 1 ) ( x \not = -1 )

x 5 + 1 = 0 x^5 + 1 = 0

x 5 = 1 x^5 = -1

x 10 = 1 x^{10} = 1

Therefore x 2000 + x 2000 = ( x 10 ) 200 + ( x 10 ) 200 = 1 200 + 1 200 = 1 + 1 = 2 \Rightarrow x^{2000} + x^{-2000} = (x^{10})^{200} + (x^{10})^{-200} = 1^{200} + 1^{-200} = 1 + 1 = \boxed{2}

x + x 1 = 1 + 5 2 x 2 + x 2 = ( x + x 1 ) 2 2 = 1 + 5 2 x 3 + x 3 = ( x + x 1 ) 3 3 ( x + x 1 ) = 1 5 2 ( x 2 + x 2 ) ( x 3 + x 3 ) = x 5 + x 5 + ( x + x 1 ) = 1 + 5 2 1 5 2 = 3 + 5 2 x 5 + x 5 = 2 x 10 + 1 = 2 x 5 x 5 = 1 ( x 5 ) 400 + ( x 5 ) 400 = 1 + 1 = 2 . x+x^{-1}=\frac{1+\sqrt{5}}{2} \\ x^{2}+x^{-2}=(x+x^{-1})^2-2=\frac{-1+\sqrt{5}}{2} \\ x^{3}+x^{-3}=(x+x^{-1})^3-3\cdot(x+x^{-1})=\frac{1-\sqrt{5}}{2} \\ (x^{2}+x^{-2})(x^{3}+x^{-3})=x^{5}+x^{-5}+(x+x^{-1})=\frac{-1+\sqrt{5}}{2}\cdot\frac{1-\sqrt{5}}{2}=\frac{-3+\sqrt{5}}{2}\\ x^{5}+x^{-5}=-2\\ x^{10}+1=-2\cdot x^{5}\\ x^{5}=-1\\ (x^{5})^{400}+(x^{5})^{-400}=1+1=\boxed{2} .\\

Rajesh Mondal - 7 years, 2 months ago

How do you guys factorize so beautifully??

Satvik Golechha - 7 years, 3 months ago

What do you mean by properties of ϕ \phi

Agnishom Chattopadhyay - 7 years, 3 months ago

Log in to reply

https://brilliant.org/discussions/thread/the-golden-ratio-what-is-it/.

ϕ \phi denotes the golden ratio which is also equal to 1 + 5 2 \frac{1 + \sqrt{5}}{2} . ϕ 2 = ϕ + 1 \phi^2 = \phi + 1 is one of the properties of the golden ratio.

Or you can prove it algebraically, ( 1 + 5 2 ) 2 (\frac{1 +\sqrt{5}}{2})^2

= 1 + 5 + 2 5 4 = \frac{1 + 5 + 2\sqrt{5}}{4}

= 6 + 2 5 4 = \frac{6 + 2\sqrt{5}}{4}

= 3 + 5 2 = \frac{3 + \sqrt{5}}{2}

= 1 + 1 + 5 2 = 1 + \frac{1 + \sqrt{5}}{2}

Siddhartha Srivastava - 7 years, 3 months ago

wonderful solution

Malay Pandey - 7 years, 3 months ago

Why I didn't know about this?@@

Quang Nguyên Võ Huỳnh - 7 years, 3 months ago

Nice job!

Eddie The Head - 7 years, 3 months ago

If x is not equals to -1; how we get x^5 + 1 = 0

Naveen Mehra - 7 years, 3 months ago

Log in to reply

I meant that x is two of the four complex roots of x 5 1 x^5 - 1 .

Siddhartha Srivastava - 7 years, 3 months ago

Log in to reply

how I get these complex roots???

Naveen Mehra - 7 years, 3 months ago

https://brilliant.org/discussions/thread/what-is-the-wrong-step/?ref_id=126938

Naveen Mehra - 7 years, 3 months ago

how did u got the 7th step..??

Siddharth Nahar - 6 years, 7 months ago

how u have reached 7th step after 6th . can u explain me?

Bhupendra Singh - 6 years, 7 months ago

can you please explain how have you factorised it

Deepansh Jindal - 5 years, 1 month ago

Log in to reply

Explain which step?

Siddhartha Srivastava - 5 years, 1 month ago

Log in to reply

how you came onto 7th line from 6th line the factorisation into x^5 +1

Deepansh Jindal - 5 years, 1 month ago

Log in to reply

@Deepansh Jindal x 4 x 3 + x 2 x + 1 = 0 x^4 - x^3 + x^2 - x + 1 = 0

Multiplying and dividing by x + 1 x+1

( x + 1 ) ( x 4 x 3 + x 2 x + 1 ) ( x + 1 ) = 0 \dfrac{(x+1)(x^4 - x^3 + x^2 - x + 1)}{(x+1)} = 0

x 5 x 4 + x 3 x 2 + x + x 4 x 3 + x 2 x + 1 x + 1 = 0 \dfrac{ x^5 - x^4 + x^3 - x^2 + x + x^4 - x^3 + x^2 - x + 1}{x+1}= 0

x 5 + 1 x + 1 = 0 \dfrac{ x^5 + 1}{x+1}= 0

Siddhartha Srivastava - 5 years, 1 month ago

Log in to reply

@Siddhartha Srivastava what make you multiply and divide by x+1 ..how you came to know or what inspired you to do so

Deepansh Jindal - 5 years, 1 month ago

Log in to reply

@Deepansh Jindal You need to remember that x ( 2 n + 1 ) + 1 = ( x + 1 ) ( x 2 n x 2 n 1 + x 2 n 2 + . . . ) x^{(2n+1)} + 1 = (x+1)(x^{2n} - x^{2n-1} + x^{2n-2} +...)

Siddhartha Srivastava - 5 years, 1 month ago

Log in to reply

@Siddhartha Srivastava thanks for this it might be very useful for me .. thanks

Deepansh Jindal - 5 years, 1 month ago

Is there any method using complex numbers?

Tejas Rangnekar - 7 years, 3 months ago

really good sol

will jain - 7 years, 2 months ago

if x is not equal to -1 then how does x^5 is -1. Although i understood the logic of the equation but I feel that these two statements are contradictory in them selves. i.e xis not equal to -1 but x^5=-1... HOW???

Ayush Porwal - 7 years, 2 months ago

Log in to reply

x^5=-1 has one root as -1 while the other 4 are 2 pairs of complex conjugate roots...hence x is not equal to -1 but there are certain complex numbers which satisfy x^5=-1

Shikhar Jaiswal - 7 years, 2 months ago
Danang AchSa
Mar 5, 2014

Misal x = e^(i.a), maka 1/x = e^(-i.a)

e^(i.a) = cosa + i.sina e^(-i.a) = cosa - i.sina --------------------------- + e^(i.a)+e^(-i.a) = 2cosa (1+V5)/2 = 2cosa Maka a = 72 derajat. x^2000 + 1/x^2000 = e^(2000i.a) + e^(-2000i.a) = 2cos(2000a) = 2cos(2000x72) = 2cos0 = 2

I wish you understand :)

Let me translate and fix your elegant solution Danang. Let x = e i θ x=e^{i\theta} , then x 1 = e i θ x^{-1}=e^{-i\theta} . Euler's formula states that, for any real number θ \theta and n n , e i n θ = cos n θ + i sin n θ e^{in\theta}=\cos n\theta+i\sin n\theta and e i n θ = cos n θ i sin n θ . e^{-in\theta}=\cos n\theta-i\sin n\theta. Then x + x 1 = 1 + 5 2 e i θ + e i θ = 1 + 5 2 cos θ + i sin θ + cos θ i sin θ = 1 + 5 2 2 cos θ = 1 + 5 2 θ = cos 1 ( 1 + 5 4 ) = 2 π 5 rad = 7 2 . \begin{aligned} x+x^{-1}&=\frac{1+\sqrt{5}}{2}\\ e^{i\theta}+e^{-i\theta}&=\frac{1+\sqrt{5}}{2}\\ \cos\theta+i\sin\theta+\cos\theta-i\sin\theta&=\frac{1+\sqrt{5}}{2}\\ 2\cos\theta&=\frac{1+\sqrt{5}}{2}\\ \theta&=\cos^{-1}\left(\frac{1+\sqrt{5}}{4}\right)\\ &=\frac{2\pi}{5}\text{rad}\\ &=72^\circ. \end{aligned} Therefore, for n = 2000 n=2000 , we obtain x 2000 + x 2000 = e 2000 i θ + e 2000 i θ = 2 cos ( 2000 θ ) = 2 cos ( 2000 7 2 ) = 2 cos ( 400 36 0 ) = 2 cos 36 0 = 2 \begin{aligned} x^{2000}+x^{-2000}&=e^{2000i\theta}+e^{-2000i\theta}\\ &=2\cos(2000\theta)\\ &=2\cos(2000\cdot72^\circ)\\ &=2\cos(400\cdot360^\circ)\\ &=2\cos360^\circ\\ &=\boxed{2} \end{aligned}

Note : If you like this solution, please vote up Danang's solution. Thanks... :)


# Q . E . D . # \text{\# }\mathbb{Q.E.D.}\text{ \#}

Tunk-Fey Ariawan - 7 years, 3 months ago

Log in to reply

It is perfect!

Renieri Ferrari - 7 years, 2 months ago

Your translated version got more upvotes then Danang`s solution :)

Ayush Garg - 6 years, 9 months ago

x + x 1 = 1 + 5 2 x 2 + x 2 = ( x + x 1 ) 2 2 = 1 + 5 2 x 3 + x 3 = ( x + x 1 ) 3 3 ( x + x 1 ) = 1 5 2 ( x 2 + x 2 ) ( x 3 + x 3 ) = x 5 + x 5 + ( x + x 1 ) = 1 + 5 2 1 5 2 = 3 + 5 2 x 5 + x 5 = 2 x 10 + 1 = 2 x 5 x 5 = 1 ( x 5 ) 400 + ( x 5 ) 400 = 1 + 1 = 2 . x+x^{-1}=\frac{1+\sqrt{5}}{2} \\ x^{2}+x^{-2}=(x+x^{-1})^2-2=\frac{-1+\sqrt{5}}{2} \\ x^{3}+x^{-3}=(x+x^{-1})^3-3\cdot(x+x^{-1})=\frac{1-\sqrt{5}}{2} \\ (x^{2}+x^{-2})(x^{3}+x^{-3})=x^{5}+x^{-5}+(x+x^{-1})=\frac{-1+\sqrt{5}}{2}\cdot\frac{1-\sqrt{5}}{2}=\frac{-3+\sqrt{5}}{2}\\ x^{5}+x^{-5}=-2\\ x^{10}+1=-2\cdot x^{5}\\ x^{5}=-1\\ (x^{5})^{400}+(x^{5})^{-400}=1+1=\boxed{2} .\\

Rajesh Mondal - 7 years, 2 months ago
Tunk-Fey Ariawan
Mar 6, 2014

Let x = e i θ x=e^{i\theta} , then x 1 = e i θ x^{-1}=e^{-i\theta} . Euler's formula states that, for any real number θ \theta and n n , e i n θ = cos n θ + i sin n θ e^{in\theta}=\cos n\theta+i\sin n\theta and e i n θ = cos n θ i sin n θ . e^{-in\theta}=\cos n\theta-i\sin n\theta. Then x + x 1 = 1 + 5 2 e i θ + e i θ = 1 + 5 2 cos θ + i sin θ + cos θ i sin θ = 1 + 5 2 2 cos θ = 1 + 5 2 θ = cos 1 ( 1 + 5 4 ) = 2 π 5 rad = 7 2 . \begin{aligned} x+x^{-1}&=\frac{1+\sqrt{5}}{2}\\ e^{i\theta}+e^{-i\theta}&=\frac{1+\sqrt{5}}{2}\\ \cos\theta+i\sin\theta+\cos\theta-i\sin\theta&=\frac{1+\sqrt{5}}{2}\\ 2\cos\theta&=\frac{1+\sqrt{5}}{2}\\ \theta&=\cos^{-1}\left(\frac{1+\sqrt{5}}{4}\right)\\ &=\frac{2\pi}{5}\text{rad}\\ &=72^\circ. \end{aligned} Therefore, for n = 2000 n=2000 , we obtain x 2000 + x 2000 = e 2000 i θ + e 2000 i θ = 2 cos ( 2000 θ ) = 2 cos ( 2000 7 2 ) = 2 cos ( 400 36 0 ) = 2 cos 36 0 = 2 \begin{aligned} x^{2000}+x^{-2000}&=e^{2000i\theta}+e^{-2000i\theta}\\ &=2\cos(2000\theta)\\ &=2\cos(2000\cdot72^\circ)\\ &=2\cos(400\cdot360^\circ)\\ &=2\cos360^\circ\\ &=\boxed{2} \end{aligned}

Note : If you like this solution, please vote up Danang's solution. Thanks... :)


# Q . E . D . # \text{\# }\mathbb{Q.E.D.}\text{ \#}

Used the same method. :)

Shantanu Nathan - 7 years, 3 months ago

i used an almost same method...

aneesh kejariwal - 7 years, 3 months ago

I also used similar method...

Samrat Mukhopadhyay - 7 years, 3 months ago

Well how did you know that the complex no has a unit modulus?

Bala Tweakbytes - 7 years, 3 months ago

Log in to reply

Since x + 1/x is purely real. Hence 1/x must be conjugate of x. Hence |x|= 1

Vishal Sharma - 7 years, 2 months ago

x + x 1 = 1 + 5 2 x 2 + x 2 = ( x + x 1 ) 2 2 = 1 + 5 2 x 3 + x 3 = ( x + x 1 ) 3 3 ( x + x 1 ) = 1 5 2 ( x 2 + x 2 ) ( x 3 + x 3 ) = x 5 + x 5 + ( x + x 1 ) = 1 + 5 2 1 5 2 = 3 + 5 2 x 5 + x 5 = 2 x 10 + 1 = 2 x 5 x 5 = 1 ( x 5 ) 400 + ( x 5 ) 400 = 1 + 1 = 2 . x+x^{-1}=\frac{1+\sqrt{5}}{2} \\ x^{2}+x^{-2}=(x+x^{-1})^2-2=\frac{-1+\sqrt{5}}{2} \\ x^{3}+x^{-3}=(x+x^{-1})^3-3\cdot(x+x^{-1})=\frac{1-\sqrt{5}}{2} \\ (x^{2}+x^{-2})(x^{3}+x^{-3})=x^{5}+x^{-5}+(x+x^{-1})=\frac{-1+\sqrt{5}}{2}\cdot\frac{1-\sqrt{5}}{2}=\frac{-3+\sqrt{5}}{2}\\ x^{5}+x^{-5}=-2\\ x^{10}+1=-2\cdot x^{5}\\ x^{5}=-1\\ (x^{5})^{400}+(x^{5})^{-400}=1+1=\boxed{2} .\\

Rajesh Mondal - 7 years, 2 months ago

I also did the same way. In fact use of complex was a hint since x + 1/x is always >= 2 for real 'x' . But in the above ques .(√5+1)/4 is less than 2 . Hence it had to be complex

Vishal Sharma - 7 years, 2 months ago

arccos of (1+sqrt(5))/4 is 72 degrees? But Isn't that 36 ?

Christian Baldo - 7 years, 1 month ago
Rajesh Mondal
Mar 24, 2014

x + x 1 = 1 + 5 2 x 2 + x 2 = ( x + x 1 ) 2 2 = 1 + 5 2 x 3 + x 3 = ( x + x 1 ) 3 3 ( x + x 1 ) = 1 5 2 ( x 2 + x 2 ) ( x 3 + x 3 ) = x 5 + x 5 + ( x + x 1 ) = 1 + 5 2 1 5 2 = 3 + 5 2 x 5 + x 5 = 2 x 10 + 1 = 2 x 5 x 5 = 1 ( x 5 ) 400 + ( x 5 ) 400 = 1 + 1 = 2 . x+x^{-1}=\frac{1+\sqrt{5}}{2} \\ x^{2}+x^{-2}=(x+x^{-1})^2-2=\frac{-1+\sqrt{5}}{2} \\ x^{3}+x^{-3}=(x+x^{-1})^3-3\cdot(x+x^{-1})=\frac{1-\sqrt{5}}{2} \\ (x^{2}+x^{-2})(x^{3}+x^{-3})=x^{5}+x^{-5}+(x+x^{-1})=\frac{-1+\sqrt{5}}{2}\cdot\frac{1-\sqrt{5}}{2}=\frac{-3+\sqrt{5}}{2}\\ x^{5}+x^{-5}=-2\\ x^{10}+1=-2\cdot x^{5}\\ x^{5}=-1\\ (x^{5})^{400}+(x^{5})^{-400}=1+1=\boxed{2} .\\

Nice..neat and strong.

Manu Kamath - 7 years, 2 months ago

Log in to reply

thanks.

Rajesh Mondal - 7 years, 2 months ago
Ashtamoorthy Ts
Mar 14, 2014

l e t x = e i θ x + 1 x = 1 + 5 2 a e i θ + a e i θ = 1 + 5 2 c o m p a r i n g r e a l a n d i m a g i n a r y p a r t s : a = 1 ; cos θ = 1 + 5 4 θ = 36 π 180 x 2000 + x 2000 = e i 36 π 180 2000 + e i 36 π 180 2000 = e i 2 ( 200 ) π + e i 2 ( 200 ) π = 1 + 1 = 2 b e c a u s e e ± i 2 n π = 1 w h e r e n = 0 , 1 , 2 , 3 , . . . . . . . . . let \\x=e^{i\theta}\\x+\frac{1}{x}=\frac{1+\sqrt{5}}{2}\\ae^{i\theta}+ae^{-i\theta}=\frac{1+\sqrt{5}}{2}\\comparing \ real \ and \ imaginary \ parts: a=1; \cos\theta=\frac{1+\sqrt{5}}{4}\\\theta=\frac{36\pi}{180}\\x^{2000}+x^{-2000}=e^{i\frac{36\pi}{180}2000}+e^{-i\frac{36\pi}{180}2000}=e^{i2(200)\pi}+e^{-i2(200)\pi}=1+1=2\\because\ e^{\pm i2n\pi} = 1\ where \ n=0,1,2,3,.........

Anna Anant
Nov 11, 2014

2 assume (x^2000+x^-2000)=y therfore (x^2000+x^-2000)^2=y^2(eqn1) and (x^2000+x^-2000 + 2)=y+2 adding 2 to both side this equal to (x^2000+x^-2000)^2=y+2(eqn2) using 1 and 2 eqn hence y=2

Kinshul Karnawat
Nov 8, 2014

{(root5+1)/2}^2-1 is a golden ratio so we can solve it with this mystery

Kuldeep Kumar
Nov 5, 2014

As, A.M > G.M therefore, [(a + b)/2] > (a.b)^(1/2) , [x^2000 + x^(-2000)] / 2 > [x^2000 . x^(-2000)]^(1/2) [x^2000 + x ^(-2000)] / 2 > 1 x^2000 + x^(-2000) > 2 Ans = 2.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...