Fibonacci-Geometric Progression!

Calculus Level 2

1 10 + 1 1 0 2 + 2 1 0 3 + 3 1 0 4 + 5 1 0 5 + 8 1 0 6 + \frac{1}{10}+ \frac{1}{10^2}+ \frac{2}{10^3}+ \frac{3}{10^4}+ \frac{5}{10^5}+ \frac{8}{10^6}+ \cdots

Find the sum of the above fractions, where the denominators follow a geometric progression and the numerators follow the Fibonacci sequence .

If your answer is A B \frac{A}{B} , where A A and B B are coprime positive integers, submit your answer as A + B A+B .


The answer is 99.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

8 solutions

Manuel Kahayon
Mar 27, 2016

Let x = 1 10 + 1 1 0 2 + 2 1 0 3 + 3 1 0 4 + 5 1 0 5 + 8 1 0 6 + x = \frac{1}{10} +\frac{1}{10^2}+ \frac{2}{10^3}+ \frac{3}{10^4}+\frac{5}{10^5}+\frac{8}{10^6}+ \cdots

x 10 = 1 1 0 2 + 1 1 0 3 + 2 1 0 4 + 3 1 0 5 + 5 1 0 6 + 8 1 0 7 + \frac{x}{10} = \frac{1}{10^2} +\frac{1}{10^3}+ \frac{2}{10^4}+ \frac{3}{10^5}+\frac{5}{10^6}+\frac{8}{10^7}+ \cdots

x + x 10 = 1 10 + 2 1 0 2 + 3 1 0 3 + 5 1 0 4 + 8 1 0 5 + x+\frac{x}{10} = \frac{1}{10}+ \frac{2}{10^2}+ \frac{3}{10^3}+\frac{5}{10^4}+\frac{8}{10^5}+ \cdots

x + x 10 + 1 = 1 + 1 10 + 2 1 0 2 + 3 1 0 3 + 5 1 0 4 + 8 1 0 5 + x+ \frac{x}{10} + 1 = 1 + \frac{1}{10}+ \frac{2}{10^2}+ \frac{3}{10^3}+\frac{5}{10^4}+\frac{8}{10^5}+ \cdots

x + x 10 + 1 = 10 ( 1 10 + 1 1 0 2 + 2 1 0 3 + 3 1 0 4 + 5 1 0 5 + 8 1 0 6 + ) x+ \frac{x}{10} + 1 = 10 \cdot (\frac{1}{10} +\frac{1}{10^2}+ \frac{2}{10^3}+ \frac{3}{10^4}+\frac{5}{10^5}+\frac{8}{10^6}+ \cdots)

x + x 10 + 1 = 10 x x+ \frac{x}{10} + 1 = 10x

x = 10 89 x= \frac{10}{89}

So, our answer is 10 + 89 = 99 10+89 = \boxed {99}

Awesome question and explanation I loved it, keep posting more, thanks!

Sravanth C. - 5 years, 2 months ago

This is great! (+1)

Reineir Duran - 5 years, 2 months ago

Unbelievable!

沂泓 纪 - 5 years, 2 months ago

Simple and best

Asif Mujawar - 5 years, 2 months ago

Brilliant!! Just loved the simplicity of how the series simplifies out.

Siva Bathula - 5 years, 2 months ago
Aditya Sky
Mar 27, 2016

Though, Fibonacci Sequence \color{#20A900}{\text{Fibonacci Sequence}} is generally defined by recursive relation, but it can also be defined explicitly using F n = ( 1 + 5 ) n ( 1 5 ) n 2 n 5 \color{#D61F06}{\large F_n\,=\,\frac{(1+\sqrt5)^{n}\,-\,(1-\sqrt5)^{n}}{2^{n} \cdot \sqrt5 \cdot }} , where n ϵ N . . . . . . . . . . . . . By Binet’s Fibonacci Formula n\,\epsilon\,\mathbb{N} \,\,.............\,\, \color{#3D99F6}{\text{By Binet's Fibonacci Formula}} .

Now, the given series is equal to n = 1 F n 1 0 n = n = 1 ( 1 + 5 ) n ( 1 5 ) n 1 0 n 2 n 5 \large \sum_{n=1}^{\infty} \frac{F_n}{10^{n}}\,=\,\sum_{n=1}^{\infty} \frac{(1+\sqrt5)^{n}\,-\,(1-\sqrt5)^{n}}{10^{n} \cdot 2^{n} \sqrt5} . 1 5 ( n = 1 ( 1 + 5 20 ) n n = 1 ( 1 5 20 ) n ) = 1 5 ( 1 + 5 19 5 1 5 19 + 5 ) \implies \frac{1}{\sqrt5} \cdot \left(\sum_{n=1}^{\infty} \left(\frac{1+\sqrt5}{20}\right)^{n} \,-\,\sum_{n=1}^{\infty} \left(\frac{1-\sqrt5}{20}\right)^{n} \right)\,=\, \frac{1}{\sqrt5}\left(\frac{1+\sqrt5}{19-\sqrt5}\,-\,\frac{1-\sqrt5}{19+\sqrt5}\right) = 40 5 356 5 = 10 89 =\frac{40\sqrt5}{356\sqrt5}\,=\,\frac{10}{89} . Hence a + b = 10 + 89 = 99 \color{#3D99F6}{a\,+\,b\,=\,10\,+\,89\,=\,99} .

Binet's Fibonacci Formula

How did you simplify those summations inside the parenthesis from the second line of your solution?

Reineir Duran - 5 years, 2 months ago

Log in to reply

You can easily see that both the series are infinite geometric series \color{#3D99F6}{\text{infinite geometric series}} whose common ratios lies between ( 1 , 1 ) (-1,1) , they are ( 1 + 5 20 0.161 ) \left (\large \frac{1+\sqrt5}{20} \approx 0.161 \right) and ( 1 5 20 0.061 ) \left (\large \frac{1-\sqrt5}{20}\,\approx\,-0.061\right) . This means both the sums approaches a number which can be evaluated by using the formula α 1 β \large \color{#D61F06}{\frac{\alpha}{1-\beta} } , where α \color{#D61F06}{\alpha} and β \color{#D61F06}{\beta} denotes, respectively, the first term and common ratio. Use this formula and you would be able to get the result.

Aditya Sky - 5 years, 2 months ago

Log in to reply

Ohhh... It was a silly mistake, didn't notice that the summation tends to infinity. Great job though!

Reineir Duran - 5 years, 2 months ago

Log in to reply

@Reineir Duran Thanks ....

Aditya Sky - 5 years, 2 months ago

The closed form for F n F_n that you state is actually called the Binet's Fibonacci formula . Since you don't provide a proof yourself, you should at least provide a reference to it for the reader.

Prasun Biswas - 5 years, 2 months ago

Log in to reply

Yes, you are right I should have proved it, but that would have made the solution unnecessarily lengthy. But anyways I'm editing the solution mentioning link for reference. Thanks for your advice.

Aditya Sky - 5 years, 2 months ago
Akshat Sharda
Mar 28, 2016

This is a more or less a similar approach as @Manuel Kahayon used.


S = 1 10 + 1 1 0 2 + 2 1 0 3 + 3 1 0 4 + 5 1 0 5 + 8 1 0 6 + S 10 = 1 1 0 2 + 1 1 0 3 + 2 1 0 4 + 3 1 0 5 + 5 1 0 6 + 8 1 0 7 + S S 10 = 9 S 10 = 1 10 + 1 1 0 3 + 1 1 0 4 + 2 1 0 5 + 3 1 0 6 + 5 1 0 7 + S 100 9 S 10 = 1 10 + S 100 S = 10 89 10 + 89 = 99 \begin{aligned} S & = \frac{1}{10} +\frac{1}{10^2}+ \frac{2}{10^3}+ \frac{3}{10^4}+\frac{5}{10^5}+\frac{8}{10^6}+ \ldots \\ \frac{S}{10} & = \frac{1}{10^2} +\frac{1}{10^3}+ \frac{2}{10^4}+ \frac{3}{10^5}+\frac{5}{10^6}+\frac{8}{10^7}+ \ldots \\ S-\frac{S}{10} & = \frac{9S}{10} = \frac{1}{10}+\underbrace{ \frac{1}{10^3}+\frac{1}{10^4}+\frac{2}{10^5}+\frac{3}{10^6}+\frac{5}{10^7} +\ldots }_{\frac{S}{100}} \\ \frac{9S}{10} & =\frac{1}{10}+\frac{S}{100} \\ \therefore S & = \frac{10}{89} \\ & \Rightarrow 10+89 =\boxed{99} \end{aligned}

Yep... I also did the exact same way..... (+1)

Rishabh Jain - 5 years, 2 months ago

Note that the generating function of the Fibonacci sequence is, f ( x ) = k = 1 F k x k = x 1 x x 2 f(x)=\sum_{k=1}^{\infty}F_kx^k=\frac{x}{1-x-x^2}

Hence, the given expression, is equal to f ( 1 10 ) = 10 89 f(\frac{1}{10})=\frac{10}{89}

Required answer = 99 \text{Required answer}=\boxed{99}

Jaehyuk Barng
Mar 29, 2016

Consider a polynominal that

x + x 2 + 2 x 3 + 3 x 4 + 5 x 8 = A x + x^2 + 2x^3 + 3x^4 + 5x^8 ⋯ = A

Then

( x + x 2 + 2 x 3 + 3 x 4 + 5 x 5 + 8 x 6 ) ( x + 1 ) (x + x^2 + 2x^3 + 3x^4 + 5x^5 + 8x^6 ⋯ )(x + 1)

= x + 2 x 2 + 3 x 3 + 5 x 4 + 8 x 5 + = x + 2x^2 + 3x^3 + 5x^4 + 8x^5 + ⋯

= ( A x ) / x =(A - x)/x

Therefore

A ( x + 1 ) = ( A x ) / x A(x + 1) = (A - x)/x

A x ( x + 1 ) + x = A Ax(x + 1) + x = A

A ( x 2 + x 1 ) = x A(x^2 + x -1) = -x

A = x x 2 + x 1 \therefore A = \frac{-x}{x^2 + x -1}

In this problem, substitute 1/10 in x.

1 / 10 1 / 100 + 10 / 100 100 / 100 \frac{-1/10}{1/100 + 10/100 - 100/100}

= 10 89 =\frac{10}{89}

So the answer is 10 + 89 = 99 10 + 89 = 99 .

汶良 林
Apr 2, 2016

William Isoroku
Mar 29, 2016

Let the sum be S S , then we have S S 10 = 1 10 + S 100 S-\frac{S}{10}=\frac{1}{10}+\frac{S}{100} and solve for S S

Hassan Abdulla
Aug 18, 2018

n = 1 F n x n = x 1 x x 2 \sum_{n=1}^\infty F_n x^n = \frac{x}{1-x-x^2} generating function

put x = 1 10 \frac{1}{10}

n = 1 F n 1 0 n = 10 89 \sum_{n=1}^\infty \frac{F_n}{10^n} =\frac{10}{89}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...