Figure out the Master term.!!!(150 followers problem)

Algebra Level 4

Find the value of

tan 1 2 4 + tan 1 4 22 + tan 1 6 92 + tan 1 8 274 + tan 1 10 652 . . . . . . . . . . . . . \tan ^{ -1 }{ \frac { 2 }{ 4 } } +\tan ^{ -1 }{ \frac { 4 }{ 22 } } +\tan ^{ -1 }{ \frac { 6 }{ 92 } } +\tan ^{ -1 }{ \frac { 8 }{ 274 } } +\tan^{-1}{\frac{10}{652}}.............


The answer is 0.785.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Bhargav Upadhyay
Mar 8, 2015

This approach might more suitable if asked in some entrance exam!! tan 1 x + tan 1 y = tan 1 { x + y 1 x y } tan 1 ( 2 4 ) + tan 1 ( 4 22 ) = tan 1 ( 3 4 ) . . . ( 1 ) tan 1 ( 3 4 ) + tan 1 ( 6 92 ) = tan 1 ( 6 7 ) . . . ( 2 ) tan 1 ( 6 7 ) + tan 1 ( 8 274 ) = tan 1 ( 10 11 ) . . . ( 3 ) F r o m ( 1 ) , ( 2 ) a n d ( 3 ) i t c a n b e c o n c l u d e t h a t I f a d d n t e r m s t h e n f i n a l t e r m w i l l b e tan 1 { f ( n ) 1 f ( n ) } , W h e r e f ( n ) i s p o l y n o m i a l f u n c t i o n o f n lim n tan 1 { f ( n ) 1 f ( n ) } w i l l g i v e tan 1 1 = π 4 = 0.785 \tan ^{ -1 }{ x } +\tan ^{ -1 }{ y } =\tan ^{ -1 }{ \left\{ \frac { x+y }{ 1-xy } \right\} } \\ \therefore \quad \tan ^{ -1 }{ \left( \frac { 2 }{ 4 } \right) } +\tan ^{ -1 }{ \left( \frac { 4 }{ 22 } \right) } =\tan ^{ -1 }{ \left( \frac { 3 }{ 4 } \right) } \quad ...(1)\\ \tan ^{ -1 }{ \left( \frac { 3 }{ 4 } \right) } +\tan ^{ -1 }{ \left( \frac { 6 }{ 92 } \right) } =\tan ^{ -1 }{ \left( \frac { 6 }{ 7 } \right) } \quad ...\quad (2)\\ \tan ^{ -1 }{ \left( \frac { 6 }{ 7 } \right) } +\tan ^{ -1 }{ \left( \frac { 8 }{ 274 } \right) } =\tan ^{ -1 }{ \left( \frac { 10 }{ 11 } \right) } ...(3)\\ From\quad (1),(2)\quad and\quad (3)\quad it\quad can\quad be\quad conclude\quad that\\ If\quad add\quad n\quad terms\quad then\quad final\quad term\quad will\quad be\\ \tan ^{ -1 }{ \left\{ \frac { f(n)\quad -1 }{ f(n) } \right\} } ,\quad Where\quad f(n)\quad is\quad polynomial\quad function\quad of\quad 'n'\\ \lim _{ n\quad \rightarrow \infty }{ \tan ^{ -1 }{ \left\{ \frac { f(n)\quad -1 }{ f(n) } \right\} } } will\quad give\quad \tan ^{ -1 }{ 1 } =\quad \frac { \pi }{ 4 } \quad =\quad 0.785\\ \\ \\

In first step please add the condition that x > 0 , y > 0 a n d x y < 1 x>0,y>0 \quad and\quad xy<1 . Nice solution Btw.

Gautam Sharma - 6 years, 3 months ago

Log in to reply

Yes you are right! I supposed to mentioned the conditions in the beginning :-)

Bhargav Upadhyay - 6 years, 3 months ago
Gautam Sharma
Feb 21, 2015

Let the denominator in each term be of the form f ( n ) = a n 4 + b n 3 + c n 2 + d n + e ( W h y ? ) f(n)=an^4+bn^3+cn^2+dn+e\space\space\space (Why?) f ( 1 ) = a + b + c + d + e = 4 f(1)=a+b+c+d+e=4

f ( 2 ) = 16 a + 8 b + 4 c + 2 d + e = 22 f(2)=16a+8b+4c+2d+e=22

f ( 3 ) = 81 a + 27 b + 9 c + 3 d + e = 92 f(3)=81a +27b+9c+3d+e=92

f ( 4 ) = 256 a + 64 b + 16 c + 4 d + e = 274 f(4)=256a+64b+16c+4d+e=274

f ( 5 ) = 625 a + 125 b + 25 c + 5 d + e = 652 f(5)=625a+125b+25c+5d+e=652

Solving this system of equations we get a = 1 , b = 0 , c = 1 , d = 0 , e = 2 a=1,b=0,c=1,d=0,e=2

f ( n ) = n 4 + n 2 + 2 f(n)=n^4+n^2+2

And numerator is of the form 2 n 2n

t n = tan 1 2 n n 4 + n 2 + 2 t_n=\tan^{-1}\frac{2n}{n^4+n^2+2}

t n = tan 1 ( n 2 + n + 1 ) ( n 2 n + 1 ) ( n 2 + n + 1 ) ( n 2 n + 1 ) + 1 t_n=\tan^{-1}\frac{(n^2+n+1)-(n^2-n+1)}{(n^2+n+1)(n^2-n+1)+1}

t n = tan 1 ( n 2 + n + 1 ) tan 1 ( n 2 n + 1 ) t_n=\tan^{-1}(n^2+n+1)-\tan^{-1}(n^2-n+1)

Let S be the sum of infinite terms

Starting from n=1 to n \rightarrow \infty

S = tan 1 ( ) tan 1 ( 1 ) S=\tan^{-1}(\infty)-\tan^{-1}(1)

We get S = π 2 π 4 = π 4 S=\frac{\pi}{2}-\frac{\pi}{4}=\frac{\pi}{4} \therefore S = 0.785 S=0.785

Did the same! Nice problem!

Kartik Sharma - 6 years, 3 months ago

Log in to reply

but why f(n) is a quartic polynomial.?

Gautam Sharma - 6 years, 3 months ago

Log in to reply

If you take difference of successive denominator terms and form a new series, you will find that when you do it for 5th time the difference becomes zero, which shows it will be a 4th order polynomial.

Bhargav Upadhyay - 6 years, 3 months ago

Log in to reply

@Bhargav Upadhyay Absolutely correct!!.

Gautam Sharma - 6 years, 3 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...