Find the value of
tan − 1 4 2 + tan − 1 2 2 4 + tan − 1 9 2 6 + tan − 1 2 7 4 8 + tan − 1 6 5 2 1 0 . . . . . . . . . . . . .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
In first step please add the condition that x > 0 , y > 0 a n d x y < 1 . Nice solution Btw.
Log in to reply
Yes you are right! I supposed to mentioned the conditions in the beginning :-)
Let the denominator in each term be of the form f ( n ) = a n 4 + b n 3 + c n 2 + d n + e ( W h y ? ) f ( 1 ) = a + b + c + d + e = 4
f ( 2 ) = 1 6 a + 8 b + 4 c + 2 d + e = 2 2
f ( 3 ) = 8 1 a + 2 7 b + 9 c + 3 d + e = 9 2
f ( 4 ) = 2 5 6 a + 6 4 b + 1 6 c + 4 d + e = 2 7 4
f ( 5 ) = 6 2 5 a + 1 2 5 b + 2 5 c + 5 d + e = 6 5 2
Solving this system of equations we get a = 1 , b = 0 , c = 1 , d = 0 , e = 2
f ( n ) = n 4 + n 2 + 2
And numerator is of the form 2 n
t n = tan − 1 n 4 + n 2 + 2 2 n
t n = tan − 1 ( n 2 + n + 1 ) ( n 2 − n + 1 ) + 1 ( n 2 + n + 1 ) − ( n 2 − n + 1 )
t n = tan − 1 ( n 2 + n + 1 ) − tan − 1 ( n 2 − n + 1 )
Let S be the sum of infinite terms
Starting from n=1 to n → ∞
S = tan − 1 ( ∞ ) − tan − 1 ( 1 )
We get S = 2 π − 4 π = 4 π ∴ S = 0 . 7 8 5
Did the same! Nice problem!
Log in to reply
but why f(n) is a quartic polynomial.?
Log in to reply
If you take difference of successive denominator terms and form a new series, you will find that when you do it for 5th time the difference becomes zero, which shows it will be a 4th order polynomial.
Problem Loading...
Note Loading...
Set Loading...
This approach might more suitable if asked in some entrance exam!! tan − 1 x + tan − 1 y = tan − 1 { 1 − x y x + y } ∴ tan − 1 ( 4 2 ) + tan − 1 ( 2 2 4 ) = tan − 1 ( 4 3 ) . . . ( 1 ) tan − 1 ( 4 3 ) + tan − 1 ( 9 2 6 ) = tan − 1 ( 7 6 ) . . . ( 2 ) tan − 1 ( 7 6 ) + tan − 1 ( 2 7 4 8 ) = tan − 1 ( 1 1 1 0 ) . . . ( 3 ) F r o m ( 1 ) , ( 2 ) a n d ( 3 ) i t c a n b e c o n c l u d e t h a t I f a d d n t e r m s t h e n f i n a l t e r m w i l l b e tan − 1 { f ( n ) f ( n ) − 1 } , W h e r e f ( n ) i s p o l y n o m i a l f u n c t i o n o f ′ n ′ lim n → ∞ tan − 1 { f ( n ) f ( n ) − 1 } w i l l g i v e tan − 1 1 = 4 π = 0 . 7 8 5