Find

Geometry Level 3

If 3 sin θ + 5 cos θ = 5 3\sin \theta + 5\cos \theta = 5 , where θ 0 \theta \ne 0 , compute 5 sin θ 3 cos θ 5\sin\theta - 3\cos\theta .


The answer is 3.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Reineir Duran
Mar 27, 2016

Let x = 5 sin θ 3 cos θ x = 5\sin \theta - 3\cos \theta . Notice that 5 2 + x 2 = 9 sin 2 θ + 30 sin θ cos θ + 25 cos 2 θ + 25 sin 2 θ 30 sin θ cos θ + 9 cos 2 θ = 34 ( sin 2 θ + cos 2 θ ) = 34. \begin{aligned} 5^2 + x^2 &= 9\sin^2 \theta + 30\sin \theta\cos \theta + 25\cos^2 \theta + 25\sin^2 \theta - 30\sin \theta \cos \theta + 9\cos^2 \theta \\ &= 34\left(\sin^2 \theta + \cos^2 \theta\right) \\ &= 34. \end{aligned}

From here, we get x = ± 3 x = \pm 3 . Since θ 0 \theta \neq 0 , 5 sin θ 3 cos θ 5\sin \theta - 3\cos \theta cannot be 3 -3 , and thus x = 3 \boxed{x = 3} .

Mention why x 3 \color{magenta}{x ≠ -3} .

Aditya Sky - 5 years, 2 months ago

Log in to reply

Since θ 0 \theta \neq 0 , 5 sin θ 3 cos θ 5\sin \theta - 3\cos \theta cannot be 3 -3 .

Reineir Duran - 5 years, 2 months ago

Log in to reply

Exactly !. You should mention this in your solution.

Aditya Sky - 5 years, 2 months ago

Log in to reply

@Aditya Sky Oh sorry... I thought this will be trivial for everyone.

Reineir Duran - 5 years, 2 months ago

1 pending report

Vote up reports you agree with

×

Problem Loading...

Note Loading...

Set Loading...