Integrating mixture of functions

Calculus Level 4

0 cos ( π x ) 4 x 2 + 1 d x = 1 B π e π A \large \int^{\infty }_{0}\frac{\cos ( \pi x) }{4x^{2}+1} \, dx=\dfrac1B{\pi e^{\frac{-\pi }{A} }}

The equation above holds true for some positive integers A A and B B . Find A + B A+B .


Also try this problem .
This problem is part of the set of complex analysis problems .


The answer is 6.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Ishan Singh
Dec 1, 2016

Relevant wiki: Differentiation Under the Integral Sign

Proposition :

0 cos m x x 2 + a 2 d x = π 2 a e a m \large{\displaystyle \int_{0}^{\infty} \frac{\cos mx}{x^2+a^2} \mathrm{d} x=\frac{\pi}{2a} e^{-am}}

Proof :

I ( m ) = 0 cos m x x 2 + a 2 d x (1) \text{I}(m) = \displaystyle \int_{0}^{\infty} \dfrac{\cos mx}{x^2+a^2} \mathrm{d} x \tag{1}

Using Integration by parts,

I ( m ) = 0 2 x sin m x m ( x 2 + a 2 ) 2 d x \text{I}(m) = \displaystyle \int_{0}^{\infty} \dfrac{2x\sin mx}{m(x^2+a^2)^2} \mathrm{d} x

m I ( m ) = 0 2 x sin m x ( x 2 + a 2 ) 2 d x (2) \implies m \cdot \text{I}(m) = \displaystyle \int_{0}^{\infty} \dfrac{2x \sin mx}{(x^2+a^2)^2} \mathrm{d} x \tag {2}

Partially Differentiating ( 2 ) (2) w.r.t. m m , we have,

I + m m I = 0 2 x 2 cos ( m x ) ( x 2 + a 2 ) 2 d x = 0 2 cos ( m x ) ( x 2 + a 2 ) d x 2 a 2 0 cos m x ( x 2 + a 2 ) 2 d x \text{I} + m\dfrac{\partial}{\partial m} \text{I} = \displaystyle \int_{0}^{\infty} \dfrac {2x^2\cos(mx)}{(x^2+a^2)^2} \mathrm{d}x = \displaystyle \int_{0}^{\infty} \dfrac {2\cos(mx)}{(x^2+a^2)} \mathrm{d}x - 2a^2\displaystyle \int_{0}^{\infty}\dfrac{\cos mx}{(x^2+a^2)^2} \mathrm{d}x

m m I = I 2 a 2 0 cos m x ( x 2 + a 2 ) 2 d x (3) \implies m\dfrac{\partial}{\partial m} \text{I} = \text{I} - 2a^2\displaystyle \int_{0}^{\infty}\dfrac{\cos mx}{(x^2+a^2)^2} \mathrm{d}x \tag{3}

Again, partially differentiating ( 3 ) (3) w.r.t. m m , we have,

m 2 m 2 I = a 2 0 2 x sin m x ( x 2 + a 2 ) 2 d x m\dfrac{\partial^2}{\partial m^2} \text{I} = a^2 \displaystyle \int_{0}^{\infty} \dfrac{2x \sin mx}{(x^2+a^2)^2} \mathrm{d} x

\implies \dfrac{\partial^2}{\partial m^2} \text{I} = a^2 \text{I} \tag{*} (from ( 2 ) (2) )

Note that I ( 0 ) = π 2 a I(0) = \dfrac{\pi}{2a} and I ( ) = 0 I(\infty) = 0

Now, solving ( ) (*) , we have,

I = π 2 a e a m I = \dfrac{\pi}{2a} e^{-am}


0 cos ( π x ) 4 x 2 + 1 d x = 1 4 0 cos ( π x ) x 2 + 1 4 d x = π 4 e π 2 \displaystyle \int \limits^{\infty }_{0}\frac{\cos \left( \pi x\right) }{4x^{2}+1} dx = \dfrac{1}{4}\int \limits^{\infty }_{0}\frac{\cos \left( \pi x\right) }{x^{2}+\frac{1}{4}} dx = \dfrac{\pi}{4} e^{-\frac{\pi}{2}}

A + B = 6 \implies A + B = \boxed{6}

Relevant wiki: Cauchy Integral Formula

Since the integrand is even, we have 0 cos ( π x ) 4 x 2 + 1 d x = 1 2 cos ( π x ) 4 x 2 + 1 d x \displaystyle \int_0^\infty \frac {\cos (\pi x)}{4x^2+1} dx = \frac 12 \int_{-\infty}^\infty \frac {\cos (\pi x)}{4x^2+1} dx . We can solve this integral by using the closed contour C C of a semicircle of radius R R \to \infty in the upper half of the complex plane.

Therefore the integral is as follows:

C e i π z 4 z 2 + 1 d z = R R e i π z 4 z 2 + 1 d z + a r c e i π z 4 z 2 + 1 d z Note that lim R a r c e i π z 4 z 2 + 1 d z = 0 = cos π x 4 x 2 + 1 d x \begin{aligned} \int_C \frac {e^{i\pi z}}{4z^2+1} dz & = \int_{-R}^R \frac {e^{i\pi z}}{4z^2+1} dz + \color{#3D99F6} \int_{arc} \frac {e^{i\pi z}}{4z^2+1} dz & \small \color{#3D99F6}\text{Note that }\lim_{R \to \infty} \int_{arc} \frac {e^{i\pi z}}{4z^2+1} dz = 0 \\ & = \int_{-\infty}^\infty \frac {\cos \pi x}{4x^2+1} dx \end{aligned}

Therefore, we have:

0 cos ( π x ) 4 x 2 + 1 d x = 1 2 C e i π z 4 z 2 + 1 d z = 1 8 C e i π z z 2 + 1 4 d z = 1 8 C e i π z ( z i 2 ) ( z + i 2 ) d z Only pole within contour z = i 2 = 1 8 2 π i e i π i 2 ( i 2 + i 2 ) d z By Cauchy integral formula = 1 4 π e π 2 \begin{aligned} \implies \int_0^\infty \frac {\cos (\pi x)}{4x^2+1} dx & = \frac 12 \int_C \frac {e^{i\pi z}}{4z^2+1} dz \\ & = \frac 18 \int_C \frac {e^{i\pi z}}{z^2 + \frac 14} dz \\ & = \frac 18 \int_C \frac {e^{i\pi z}}{{\color{#3D99F6}\left(z - \frac i2 \right)}\left(z + \frac i2 \right)} dz & \small \color{#3D99F6}\text{Only pole within contour }z = \frac i2 \\ & = \frac 18 \cdot 2\pi i \cdot \frac {e^{i\pi \cdot \frac i2}}{\left(\frac i2 + \frac i2 \right)} dz & \small \color{#3D99F6}\text{By Cauchy integral formula} \\ & = \frac 14 \pi e^{-\frac \pi 2} \end{aligned}

A + B = 2 + 4 = 6 \implies A+B = 2+4 = \boxed{6}

(+1) for drawing the contour and amazing latex work.

Refaat M. Sayed - 4 years, 6 months ago

Log in to reply

Thanks. Glad that you like them.

Chew-Seong Cheong - 4 years, 6 months ago

Using residue theorem is some time ago for me. Thanks for refreshing memory!

Peter van der Linden - 4 years, 6 months ago

Hello sir. Integration Contest 3 is ongoing. I'd like to invite you to participate :)

Ishan Singh - 4 years, 6 months ago

Inside Complex Analysis, supposing known residue theorem...

Proposition 1.-

Let P , Q P,Q be polynomials with degree (Q) - degree (P) 1 \text{ degree (Q) - degree (P)} \ge 1 . If f = P Q f = \frac{P}{Q} doesn't have any poles at the real axis, the following improper integral converges and its value is f ( x ) e i x d x = 2 i π I m a > 0 Res( f ( x ) e i x , a ) \displaystyle \int_{- \infty}^{\infty} f(x) \cdot e^{ix} \, dx = 2i\pi \cdot \sum_{Im \space a > 0} \text{ Res(} f(x)\cdot e^{ix},a) with a a being a pole of f f .

Proof .-

(Only if someone asks to me)

Examples.- Let a , b R a, b \in \mathbb{R} \space such that a , b > 0 a , b > 0

I = 0 cos b t t 2 + a 2 d t = π 2 a e a b \displaystyle I = \int_{0}^{\infty} \frac{\cos bt}{t^2 +a^2} \, dt = \frac{\pi}{2ae^{ab}} J = 0 t sin b t t 2 + a 2 d t = π 2 e a b \displaystyle J = \int_{0}^{\infty} \frac{t \sin bt}{t^2 +a^2} \, dt = \frac{\pi}{2e^{ab}}

Proof.-

I , J I, J are integrals of even functions,

Calculation of I:

I = 0 cos b t t 2 + a 2 d t = b 2 ( cos x x 2 + a 2 b 2 d x ) = b 2 ( Real e i x x 2 + a 2 b 2 d x ) \displaystyle I = \int_{0}^{\infty} \frac{\cos bt}{t^2 +a^2} \, dt = \frac{b}{2}\left( \int_{-\infty}^{\infty} \frac{\cos x}{x^2 +a^2 b^2} \, dx \right) = \frac{b}{2} \left (\text{ Real }\int_{-\infty}^{\infty} \frac{e^{ix}}{x^2 +a^2 b^2} \, dx \right) then we are going to apply proposition 1. The only pole of e i x x 2 + a 2 b 2 \frac{e^{ix}}{x^2 +a^2 b^2} in the upper-half plane is z = a b i z = ab i and its residue value is e a b 2 a b i \frac{e^{-ab}}{2ab i} so e i x x 2 + a 2 b 2 d x = 2 π i e a b 2 a b i = π a b e a b I = π 2 a e a b \displaystyle \int_{-\infty}^{\infty} \frac{e^{ix}}{x^2 +a^2 b^2} \, dx = 2\pi i \frac{e^{-ab}}{2ab i} = \frac{\pi}{ab e^{ab}} \Rightarrow I = \frac{\pi}{2a e^{ab}} . With this we can calculate the above integral, (for instance like Isan Signh did ), this is A = 2 , B = 4 A = 2, B = 4

Calculation of J:

J = 0 t sin b t t 2 + a 2 d t = 1 2 ( x sin x x 2 + a 2 b 2 d x ) = 1 2 ( Image x e i x x 2 + a 2 b 2 d x ) \displaystyle J = \int_{0}^{\infty} \frac{t \sin bt}{t^2 +a^2} \, dt = \frac{1}{2}\left( \int_{-\infty}^{\infty} \frac{x \sin x}{x^2 +a^2 b^2} \, dx \right) = \frac{1}{2} \left (\text{ Image }\int_{-\infty}^{\infty} \frac{xe^{ix}}{x^2 +a^2 b^2} \, dx \right) then we are going to apply proposition 1. The only pole of x e i x x 2 + a 2 b 2 \frac{xe^{ix}}{x^2 +a^2 b^2} in the upper-half plane is z = a b i z = ab i and its residue value is e a b 2 \frac{e^{-ab}}{2} so x e i x x 2 + a 2 b 2 d x = 2 π i e a b 2 = π i e a b J = π 2 e a b \displaystyle \int_{-\infty}^{\infty} \frac{xe^{ix}}{x^2 +a^2 b^2} \, dx = 2\pi i \frac{e^{-ab}}{2} = \frac{\pi i}{ e^{ab}} \Rightarrow J= \frac{\pi}{2 e^{ab}} \square

Proposition 2.- (for Refaat..)

Let P , Q P,Q be polynomials with degree (Q) - degree (P) 1 \text{ degree (Q) - degree (P)} \ge 1 . If f = P Q f = \frac{P}{Q} doesn't have any poles at the real axis, except at the origin, where f f is able to have a simple pole. Then, ϵ > 0 \forall \epsilon > 0 , the integrals ϵ f ( x ) e i x d x \displaystyle \int_{- \infty}^{-\epsilon} f(x)\cdot e^{ix} \, dx , ϵ f ( x ) e i x d x \displaystyle \int_{\epsilon}^{\infty} f(x)\cdot e^{ix} \, dx converge as ϵ 0 \epsilon \to 0 , and lim ϵ 0 x ϵ f ( x ) e i x d x = 2 i π I m a > 0 Res( f ( x ) e i x , a ) + i π Res( f ( x ) e i x , 0 ) \displaystyle \lim_{\epsilon \to 0} \int_{|x| \ge \epsilon} f(x)\cdot e^{ix} \, dx = 2i\pi \cdot \sum_{Im \space a > 0} \text{ Res(} f(x)\cdot e^{ix},a) + i\pi \cdot \text{ Res(} f(x)\cdot e^{ix},0)

( Proof.- Only if Refaat asks to me, because this proposition is not necessary for this exercise)

Example.-

0 sin t t d t = π 2 \displaystyle \int_{0}^{\infty} \frac{\sin t}{t} \, dt = \frac{\pi}{2}

Proof.-

Applying proposition 2, Res ( e i x x , 0 ) = 1 \text{ Res (} \frac{e^{ix}}{x}, 0) = 1 \Rightarrow e i x x d x = π i 0 sin x x d x = π 2 \displaystyle \int_{-\infty}^{\infty} \frac{e^{ix}}{x} \, dx = \pi i \Rightarrow \int_{0}^{\infty} \frac{\sin x}{x} \, dx = \frac{\pi}{2}

Of course you can post your solution. But we will not apply the corollary in this problem . You know why?

Refaat M. Sayed - 4 years, 6 months ago

Log in to reply

do you mean because that corollary use e i x e^{ix} ?(That has easy fixing) or what do you want to say?Now, I don't understand you very good... Then, do you want me to write the solution? and you fix my mistakes and ask me your doubts?

Guillermo Templado - 4 years, 6 months ago

Log in to reply

No we won't use the corollary because the roots of the function not real. Any way, you can post the solution and we check it together

Refaat M. Sayed - 4 years, 6 months ago

Log in to reply

@Refaat M. Sayed ok, I'll start very soon, but Isan Sighn has just posted one solution... And he gets the same than me... Anyway, I'll post the corollary and I'll make than I am able to do... I haven't read his solution... maybe it's very similar than mine... In two hours, I hope to start with the corollary and proving his proposition with this corollary of residue theorem...

Guillermo Templado - 4 years, 6 months ago

Log in to reply

@Guillermo Templado I have "finished" this proof... Then, please could you tell me your doubts in this problem and in the other problem(because I'm pretty certain than you have some doubt, at least in the other problem), my mistakes, suggestions? do you want me to make the proofs of propositions 1 and 2?, Good, etc, etc...

Guillermo Templado - 4 years, 6 months ago

Log in to reply

@Guillermo Templado (+1) from me. Excellent analysis @Guillermo Templado . Good work ¨ \Huge{ \ddot\smile }

Refaat M. Sayed - 4 years, 6 months ago

Log in to reply

@Refaat M. Sayed thank you very much, (+1) in Likes...

Guillermo Templado - 4 years, 6 months ago

Hello sir. Integration Contest 3 is ongoing. I'd like to invite you to participate :)

Ishan Singh - 4 years, 6 months ago

Log in to reply

Please, don't cal me sir, buddy, I know I'm not young, but I prefer buddy, friend,... thank you anyway. I don't know... I don't contest now, but I'll see this web and what I'll do, althought my methods are old like me, ;) :)...

Guillermo Templado - 4 years, 6 months ago
Mark Hennings
Dec 11, 2016

For variety... Taking the Fourier transform of the function f ( x ) = e 1 2 x f(x) = e^{-\frac12|x|} , ( F f ) ( t ) = 1 2 π R f ( x ) e i x t d x = 1 2 π ( 1 1 2 + i t + 1 1 2 i t ) = 2 2 π ( 4 t 2 + 1 ) (\mathcal{F}f)(t) \; = \; \frac{1}{\sqrt{2\pi}}\int_{\mathbb{R}} f(x)e^{-ixt}\,dx \; =\; \frac{1}{\sqrt{2\pi}}\left(\frac{1}{\frac12 + it} + \frac{1}{\frac12 - it}\right) \; =\; \frac{2\sqrt{2}}{\sqrt{\pi}(4t^2+1)} and so (the function f f is well-behaved for this identity to be true for all x x , and not just in the "almost everywhere" sense) f ( x ) = ( F 1 F f ) ( x ) = 1 2 π R ( F f ) ( t ) e i t x d t = 2 π R e i t x 4 t 2 + 1 d t f(x) \; = \; (\mathcal{F}^{-1}\mathcal{F}f)(x) \; =\; \frac{1}{\sqrt{2\pi}}\int_{\mathbb{R}} (\mathcal{F}f)(t)e^{itx}\,dt \; = \; \frac{2}{\pi}\int_{\mathbb{R}}\frac{e^{itx}}{4t^2+1}\,dt so that 0 cos π t 4 t 2 + 1 = 1 2 R e i π t 4 t 2 + 1 d t = 1 4 e 1 2 π \int_0^\infty \frac{\cos \pi t}{4t^2+1} \; = \; \tfrac12\int_{\mathbb{R}} \frac{e^{i\pi t}}{4t^2+1}\,dt \; =\; \tfrac14e^{-\frac12\pi} making the answer 2 + 4 = 6 2+4=\boxed{6} .

Hello sir. Integration Contest 3 is ongoing. I'd like to invite you to participate :)

Ishan Singh - 4 years, 6 months ago

Used the same approach; I find this approach truly elegant.

Samrat Mukhopadhyay - 4 years, 5 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...