Find the sum

Calculus Level 3

S = 1 1 2 + 2 2 3 + 3 3 4 + 4 4 5 + 0 5 6 + 1 6 7 + . . . = k = 1 k mod 5 k ( k + 1 ) \begin{aligned} S&=\frac{1}{1\cdot2}+\frac{2}{2\cdot3}+\frac{3}{3\cdot4}+\frac{4}{4\cdot5}+\frac{0}{5\cdot6}+\frac{1}{6\cdot7}+...\\ &=\sum_{k=1}^∞\frac{k\text { mod 5}}{k(k+1)}\end{aligned}

Evaluate the infinite sum above and enter 1 0 10 S \lfloor 10^{10} S \rfloor .

Notation : \lfloor \cdot \rfloor denotes the floor function.


The answer is 16094379124.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Apr 22, 2017

S = lim n ( 1 1 2 + 2 2 3 + 3 3 4 + 4 4 5 + 0 5 6 + 1 6 7 + . . . + 4 ( 5 n 1 ) 5 n + 0 5 n ( 5 n + 1 ) ) = lim n ( 1 1 1 2 + 2 2 2 3 + 3 3 3 4 + 4 4 4 5 + 0 + 1 6 1 7 + . . . + 4 5 n 1 4 5 n + 0 ) = lim n ( 1 1 + 1 2 + 1 3 + 1 4 + 1 5 5 5 + 1 6 + 1 7 + . . . + 4 5 n 1 + 1 5 n 5 5 n ) = lim n [ ( 1 1 + 1 2 + 1 3 + . . . + 1 5 n ) 5 ( 1 5 + 1 10 + 1 15 + . . . + 1 5 n ) ] = lim n [ ( 1 1 + 1 2 + 1 3 + . . . + 1 5 n ) ( 1 1 + 1 2 + 1 3 + . . . + 1 n ) ] = lim n ( H 5 n H n ) See note below. = ln ( 5 n ) + γ ln ( n ) γ = ln 5 \begin{aligned} S &= \lim_{n \to \infty} \left( \frac 1{1\cdot2} + \frac 2{2\cdot3} +\frac 3{3\cdot4} + \frac 4{4\cdot5} +\frac 0{5\cdot6} + \frac 1{6\cdot7} +... + \frac 4{(5n-1)\cdot5n} + \frac 0{5n\cdot(5n+1)} \right) \\ &= \lim_{n \to \infty} \left( \frac 11 - \frac 12 +\frac 22 - \frac 23 +\frac 33- \frac 34 +\frac 44 - {\color{#3D99F6}\frac 45+ 0} + \frac 16 - \frac 17 +... + \frac 4{5n-1} - {\color{#3D99F6}\frac 4{5n}+ 0} \right) \\ &= \lim_{n \to \infty} \left(\frac 11 +\frac 12 +\frac 13+\frac 14 {\color{#3D99F6}+ \frac 15 - \frac 55} + \frac 16 + \frac 17 +... + \frac 4{5n-1} {\color{#3D99F6}+ \frac 1{5n} - \frac 5{5n}} \right) \\ &= \lim_{n \to \infty} \left[\left(\frac 11 +\frac 12 +\frac 13+...+ \frac 1{5n} \right) - 5 \left(\frac 15 +\frac 1{10} +\frac 1{15}+... + \frac 1{5n} \right) \right] \\ &= \lim_{n \to \infty} \left[ \left(\frac 11 +\frac 12 +\frac 13+...+ \frac 1{5n} \right) - \left(\frac 11 +\frac 12 +\frac 13+... + \frac 1n \right) \right] \\ &= \lim_{n\to \infty} (H_{5n} - H_n) & \small \color{#3D99F6} \text{See note below.} \\ &= \ln(5n) + \gamma - \ln(n)-\gamma \\ &= \ln 5 \end{aligned}

Note : lim n H n = ln ( n ) γ \displaystyle \lim_{n \to \infty} H_n = \ln (n) - \gamma , where H n H_n is the n n th harmonic number and γ \gamma is the Euler-Mascheroni constant .

( 1 1 + 1 2 + 1 3 + . . . ) 5 ( 1 5 + 1 10 + 1 15 + . . , ) = \left(\frac 11 +\frac 12 +\frac 13+... \right) - 5 \left(\frac 15 +\frac 1{10} +\frac 1{15}+..,\right) = \infty - \infty

Pi Han Goh - 4 years, 1 month ago

Log in to reply

I have done the changes.

Chew-Seong Cheong - 4 years, 1 month ago

Log in to reply

lim n ( 1 1 + 1 2 + 1 3 + . . . + 1 5 n ) lim n 5 ( 1 5 + 1 10 + 1 15 + . . . + 1 5 n ) = \lim_{n \to \infty} \left(\frac 11 +\frac 12 +\frac 13+...+ \frac 1{5n} \right) - \lim_{n \to \infty} 5 \left(\frac 15 +\frac 1{10} +\frac 1{15}+... + \frac 1{5n} \right) = \infty - \infty

Pi Han Goh - 4 years, 1 month ago

Log in to reply

@Pi Han Goh The mechanics aren't rigorous ( there shouldn't be an "n" remaining after a limit is taken, and it doesn't make sense to say that lim n H n = l n ( n ) γ \lim_{n\to\infty} H_n=ln(n)-\gamma ) but his general idea is correct (and quite creative!).

If we call S n = k = 1 n k mod 5 k ( k + 1 ) S_n = \sum_{k=1}^{n}{\frac{k\text{ mod 5}}{k\cdot{(k+1)}}} , then through Chew-Seong Cheong's methods from the first three lines, we can see that the following holds:

S 5 = 1 1 + 1 2 + 1 3 + 1 4 + 1 5 5 5 S_5 = \frac{1}{1}+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}-\frac{5}{5}

S 10 = 1 1 + 1 2 + 1 3 + 1 4 + 1 5 5 5 + 1 6 + 1 7 + 1 8 + 1 9 + 1 10 5 10 S_{10} = \frac{1}{1}+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}-\frac{5}{5}+ \frac{1}{6}+\frac{1}{7}+\frac{1}{8}+\frac{1}{9}+\frac{1}{10}-\frac{5}{10}

= ( 1 1 + 1 2 + 1 3 + 1 4 + 1 5 + 1 6 + 1 7 + 1 8 + 1 9 + 1 10 ) ( 1 1 + 1 2 ) =( \frac{1}{1}+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+ \frac{1}{6}+\frac{1}{7}+\frac{1}{8}+\frac{1}{9}+\frac{1}{10})-(\frac{1}{1}+\frac{1}{2})

As long as the index is a multiple of 5, the above structure holds. So we guarantee that by defining T n = S 5 n T_n = S_{5n} ; i.e.

T n = ( 1 1 + 1 2 + 1 3 + . . . + 1 5 n ) ( 1 1 + 1 2 + . . . + 1 n ) T_n =( \frac{1}{1}+\frac{1}{2}+\frac{1}{3}+ ... + \frac{1}{5n}) - ( \frac{1}{1}+\frac{1}{2}+...+ \frac{1}{n})

So,

= [ 1 1 + 1 2 + 1 3 + . . . + 1 5 n l n ( 5 n ) ] [ 1 1 + 1 2 + . . . + 1 n l n ( n ) ] + l n ( 5 n ) l n ( n ) =[\: \frac{1}{1}+\frac{1}{2}+\frac{1}{3}+ ... + \frac{1}{5n}-ln(5n)\:]-[\: \frac{1}{1}+\frac{1}{2}+ ... + \frac{1}{n}-ln(n)\:] +ln(5n)-ln(n)

= [ 1 1 + 1 2 + 1 3 + . . . + 1 5 n l n ( 5 n ) ] [ 1 1 + 1 2 + . . . + 1 n l n ( n ) ] + l n ( 5 ) =[\: \frac{1}{1}+\frac{1}{2}+\frac{1}{3}+ ... + \frac{1}{5n}-ln(5n)\:]-[\: \frac{1}{1}+\frac{1}{2}+ ... + \frac{1}{n}-ln(n)\:] +ln(5)

As n {n\to\infty} , then 5 n {5n\to\infty} , so the first portion of T n T_n goes to γ \gamma , as does the second portion. Since both exist, we can subtract one limit from the other:

lim n S n = lim n T n = γ γ + l n ( 5 ) = l n ( 5 ) \lim_{n\to\infty} S_n=\lim_{n\to\infty} T_n = \gamma - \gamma + ln(5) = ln(5)

Daniel Juncos - 4 years, 1 month ago

Ah, I follow it now. Excellent. My proof is completely different.

Daniel Juncos - 4 years, 1 month ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...