Find the trick and go for it...

Algebra Level 5

Find the value of

1 a < b < c 1 2 a 3 b 5 c \large \sum_{1\le a<b<c} \frac{1}{2^a3^b5^c}

That is the sum of 1 2 a 3 b 5 c \dfrac{1}{2^a3^b5^c} over all triples of positive integers ( a , b , c ) (a, b, c) satisfying a < b < c a<b<c .


Give your answers to 4 decimal places.


The answer is 0.0006.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Otto Bretscher
Oct 15, 2018

For positive integers a , x , y a,x,y , we sum 1 2 a 1 3 a + x 1 5 a + x + y = 1 3 0 a 1 1 5 x 1 5 y = 1 29 1 14 1 4 = 1 1624 0.000616 \sum\frac{1}{2^a}\frac{1}{3^{a+x}}\frac{1}{5^{a+x+y}}=\sum\frac{1}{30^a}\frac{1}{15^x}\frac{1}{5^y}=\frac{1}{29}\frac{1}{14}\frac{1}{4}=\frac{1}{1624}\approx\boxed{0.000616}

Chew-Seong Cheong
Oct 15, 2018

S = 1 a < b < c 1 2 a 3 b 5 c = a = 1 1 2 a b = a + 1 1 3 b c = b + 1 1 5 c = a = 1 1 2 a b = a + 1 1 3 b 1 5 b + 1 c = 0 1 5 c Note that k = 0 ( 1 a ) k = 1 1 1 a = a a 1 = a = 1 1 2 a b = a + 1 1 3 b 1 5 b + 1 5 4 = 1 4 a = 1 1 2 a b = a + 1 1 1 5 b = 1 4 1 14 a = 1 1 2 a 1 1 5 a = 1 4 1 14 a = 1 1 3 0 a = 1 4 1 14 1 29 0.0006 \begin{aligned} S & = \sum_{1\le a <b<c} \frac 1{2^a3^b5^c} \\ & = \sum_{a=1}^\infty \frac 1{2^a} \sum_{b=a+1}^\infty \frac 1{3^b} \sum_{c=b+1}^\infty \frac 1{5^c} \\ & = \sum_{a=1}^\infty \frac 1{2^a} \sum_{b=a+1}^\infty \frac 1{3^b} \cdot \frac 1{5^{b+1}} \color{#3D99F6} \sum_{c=0}^\infty \frac 1{5^c} & \small \color{#3D99F6} \text{Note that} \sum_{k=0}^\infty \left( \frac 1a \right)^k = \frac 1{1-\frac 1a} = \frac a{a-1} \\ & = \sum_{a=1}^\infty \frac 1{2^a} \sum_{b=a+1}^\infty \frac 1{3^b} \cdot \frac 1{5^{b+1}} \cdot \color{#3D99F6}\frac 54 \\ & = \frac 14 \sum_{a=1}^\infty \frac 1{2^a} \sum_{b=a+1}^\infty \frac 1{15^b} \\ & = \frac 14 \cdot \frac 1{14} \sum_{a=1}^\infty \frac 1{2^a} \cdot \frac 1{15^a} \\ & = \frac 14 \cdot \frac 1{14} \sum_{a=1}^\infty \frac 1{30^a} \\ & = \frac 14 \cdot \frac 1{14} \cdot \frac 1{29} \\ & \approx \boxed{0.0006} \end{aligned}

But in the question we can consider that as a GP series. In that case the answer is 0.000459770115. Why is it different? Please explain.

Bivab Mishra - 2 years, 7 months ago

Log in to reply

How did you get 0.000459770115?

Chew-Seong Cheong - 2 years, 7 months ago

Log in to reply

Here r=1/{(2) (3) (5)} And a=1/{(2) (3^2) (5^3)} Then we will apply summation of GP of infinite series, as r<1.

Bivab Mishra - 2 years, 7 months ago

Log in to reply

@Bivab Mishra Sorry sorry you are correct ,I considered only one case.

Bivab Mishra - 2 years, 7 months ago

@Bivab Mishra You have included 1 2 2 3 2 5 3 \dfrac 1{2^2\cdot 3^2 \cdot 5^3} , 1 2 3 3 5 3 \dfrac 1{2\cdot 3^3 \cdot 5^3} , 1 2 4 5 5 3 \dfrac 1{2^4\cdot^5\cdot 5^3} and many other terms that are not to be included.

Chew-Seong Cheong - 2 years, 7 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...