Find the value of this series

Algebra Level 3

n = 1 n 2 n = ? \large\sum_{n=1}^{\infty}\dfrac{n}{2^n} = \, ?


The answer is 2.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Chew-Seong Cheong
May 12, 2016

Consider the Maclaurin series of an infinite geometric progression.

n = 0 x n = 1 1 x Differentiate both sides with respect to x n = 1 n x n 1 = 1 ( 1 x ) 2 Multiply both sides by x n = 1 n x n = x ( 1 x ) 2 Put x = 1 2 n = 1 n 2 n = 1 2 ( 1 1 2 ) 2 = 2 \begin{aligned} \sum_{n=0}^\infty x^n & = \frac{1}{1-x} \quad \quad \small \color{#3D99F6}{\text{Differentiate both sides with respect to }x} \\ \sum_{n=1}^\infty n x^{n-1} & = \frac{1}{(1-x)^2} \quad \quad \small \color{#3D99F6}{\text{Multiply both sides by }x} \\ \sum_{n=1}^\infty n x^n & = \frac{x}{(1-x)^2} \quad \quad \small \color{#3D99F6}{\text{Put }x=\frac{1}{2}} \\ \sum_{n=1}^\infty \frac{n}{2^n} & = \frac{\frac{1}{2}}{\left(1-\frac{1}{2}\right)^2} = \boxed{2} \end{aligned}

i wont use this method but i wont help from u =1/2 + 2/4+ 3/8 + 4/16+..................
then = 1+lim (n+2)/(8n) n >>infinty = 1+1/8 whats my rong in thise method

Patience Patience - 5 years, 1 month ago

Log in to reply

lim n n + 2 8 n 3 8 + 4 16 + 5 32 + . . . \displaystyle \lim_{n \to \infty} \frac{n+2}{8n} \ne \frac{3}{8} + \frac{4}{16} + \frac{5}{32} +...

Chew-Seong Cheong - 5 years, 1 month ago

Log in to reply

may be its the the last of this series i mean the last of this series is 1/8

Patience Patience - 5 years, 1 month ago

Log in to reply

@Patience Patience lim n n 2 n = 0 \displaystyle \lim_{n \to \infty} \frac{n}{2^n} = 0 .

Chew-Seong Cheong - 5 years, 1 month ago

Log in to reply

@Chew-Seong Cheong ok u true but i am serach new method lim (n+2)/(8n) n >>infinty i mean the last of seriese and the first is 3/8 ok there rong ok sum (a+b)= sum a+sum b

Patience Patience - 5 years, 1 month ago
Miliyon Tilahun
May 12, 2016

This is a well-known result due to Nicole Oresme n = 1 n 2 n = 2 \sum_{n=1}^\infty \frac{n}{2^n}=2 Proof: Consider the function f ( z ) = 1 1 z f(z)=\frac{1}{1-z} The power series expansion of f ( z ) f(z) is f ( z ) = n = 1 z n f(z)=\sum_{n=1}^{\infty}z^n Now take the derivative of f f , which is f ( z ) = 1 ( 1 z ) 2 = n = 1 n z n 1 f'(z)=\frac{1}{(1-z)^2}=\sum_{n=1}^{\infty}nz^{n-1} Multiplying by z z z f ( z ) = z ( 1 z ) 2 = n = 1 n z n (1) zf'(z)=\frac{z}{(1-z)^2}=\sum_{n=1}^{\infty}nz^{n} \tag{1} Substituting z = 1 / 2 z=1/2 in (1) n = 1 n 2 n = 1 2 ( 1 1 2 ) 2 = 2 (Q.E.D) \sum_{n=1}^\infty \frac{n}{2^n}=\frac{\frac{1}{2}}{\biggl(1-\frac{1}{2}\biggl)^2}=2\tag{Q.E.D}

Using sum of infinite terms of AGP.

1 2 + 2 4 + 3 8 + . . . \Rightarrow \dfrac{1}{2}+\dfrac{2}{4}+\dfrac{3}{8}+...

1 2 ( 1 + 1 2 + 2 4 + . . . ) \dfrac{1}{2}\left(1+\dfrac{1}{2}+\dfrac{2}{4}+...\right)

Now, a = 1 a=1 , r = 1 2 r=\dfrac{1}{2} and d = 1 d=1 .

1 2 ( 1 1 1 2 + 1 × 1 2 ( 1 1 2 ) 2 ) \dfrac{1}{2}\left(\dfrac{1}{1-\frac{1}{2}}+\dfrac{1×\frac{1}{2}}{\left(1-\frac{1}{2}\right)^2}\right)

1 2 ( 2 + 1 2 × 4 ) \dfrac{1}{2}\left(2+\dfrac{1}{2}×4\right)

1 2 × 4 = 2 \dfrac{1}{2}×4=\boxed{2}

Did the same way (+1). :)

Aditya Sky - 5 years, 1 month ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...