Five storey Trigonometry Tower

Geometry Level 2

sin x cos x tan x cot x sec x csc x \huge \frac{\hspace{2mm} \frac{\hspace{2mm} \frac{\hspace{2mm} \frac{\hspace{2mm} \frac{\sin x}{\cos x}\hspace{2mm} }{\tan x}\hspace{2mm} }{\cot x}\hspace{2mm} }{\sec x}\hspace{2mm} }{\csc x}

Find the value of the above fraction tower if 0 < x < 90 0^\circ < x < {90}^\circ .

0 1 sin 2 x \sin^2 x cos 2 x \cos^2 x tan x \tan x Undefined

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

5 solutions

Chew-Seong Cheong
Jun 24, 2015

( ( ( ( sin x cos x ) tan x ) cot x ) sec x ) csc x = ( ( ( tan x tan x ) cot x ) sec x ) csc x = ( ( 1 cot x ) sec x ) csc x = ( tan x sec x ) csc x = sin x csc x = sin 2 x \begin{aligned} \frac{\left( \frac {\left( \frac{\left(\frac{\left( \frac{\sin{x}}{\cos{x}} \right)} {\tan{x}} \right)}{\cot{x}} \right)} {\sec{x}} \right) }{\csc{x}} & = \frac{\left( \frac {\left( \frac{\left(\frac{\tan{x}} {\tan{x}} \right)}{\cot{x}} \right)} {\sec{x}} \right) }{\csc{x}} = \frac{\left( \frac {\left( \frac{1}{\cot{x}} \right)} {\sec{x}} \right) }{\csc{x}} = \frac{\left( \frac {\tan{x}} {\sec{x}} \right) }{\csc{x}} \\ & = \frac {\sin{x}}{\csc{x}} = \boxed{\sin^2{x}} \end{aligned}

Moderator note:

Simple standard approach.

what exactky is wrong if i do these: (sinx/cosx ) div (tanx/cotx/ secx/cscx)=(sinx/cosx) div ( (tanx/cotx) div (secx/cscx)) = (sinx/ cosx) div (tanx ^2 * cscx/ secx) = (sinx/cosx ) * secx / (cscx * tanx ^2 ) = sinx ^2 / (cosx ^2 * tanx ^2) = 1

the position of equal to sign "=" vertically aligned to which of the horizontal division lines... is Important... which is not clearly mentioned in the problem.

.. :/ (meh)

Ananya Aaniya - 5 years, 11 months ago

Log in to reply

Different steps will have different results. The step should start from top to bottom as shown in my solution.

Chew-Seong Cheong - 5 years, 11 months ago

Log in to reply

What is the main reasoning behind your word "should"? how can one arbitrarily be sure of what is "should" and what "should not" when no clear specification in qs?

Ananya Aaniya - 5 years, 11 months ago

Log in to reply

@Ananya Aaniya Sorry, for not using the right word. I mean "by convention". For example: 5 4 3 2 1 5^{4^{3^{2^{1}}}} , the calculation should, "oops", I mean "must" start from 2 1 2^1 , then 3 2 3^2 , 4 9 4^9 then 5 2 62144 5^262144 . Here, it should "oops", must start from sin x / cos x \sin{x}/\cos{x} , then tan x / tan x \tan{x}/\tan{x} , 1 / cot x 1/ \cot{x} , tan x / sec x \tan{x}/\sec{x} ,.... I should be going out for lunch now.

Chew-Seong Cheong - 5 years, 11 months ago

Log in to reply

@Chew-Seong Cheong @Chew-Seong Cheong Haha! your so funny :-) nice humor

Maygrens Macatangay - 4 years, 6 months ago

Log in to reply

@Maygrens Macatangay I mean "you're"

Maygrens Macatangay - 4 years, 6 months ago
Kelly B
Jul 4, 2015

This definitely is smooth!

Aidan Zoldyk - 3 years, 6 months ago
Lew Sterling Jr
Jul 5, 2015

Chris Brown
Apr 20, 2020

Starting at the top, sin ( x ) cos ( x ) = tan ( x ) \frac { \sin { \left( x \right) } }{ \cos { \left( x \right) } } =\tan { \left( x \right) } . That leaves us with tan ( x ) tan ( x ) = 1 \frac { \tan { \left( x \right) } }{ \tan { \left( x \right) } } =1 . This subsequently leaves us with 1 cot ( x ) = tan ( x ) \frac { 1 }{ \cot { \left( x \right) } } =\tan { \left( x \right) } . This then leaves us with tan ( x ) sec ( x ) \frac { \tan { \left( x \right) } }{ \sec { \left( x \right) } } which, if you do some exploring with the ratios of the sides, is equal to sin ( x ) \sin { \left( x \right) } . This finally leaves us with sin ( x ) csc ( x ) = sin 2 ( x ) \frac { \sin { \left( x \right) } }{ \csc { \left( x \right) } } =\sin ^{ 2 }{ \left( x \right) } .

Jack Rawlin
Feb 10, 2016

( sin x cos x ) tan x cot x sec x csc x , sin x cos x = tan x \Large \frac{\frac{\frac{\frac{\left(\frac{\sin x}{\cos x}\right)}{\tan x}}{\cot x}}{\sec x}}{\csc x},~ \frac{\sin x}{\cos x} = \tan x

( tan x tan x ) cot x sec x csc x \Large \frac{\frac{\frac{\left(\frac{\tan x}{\tan x}\right)}{\cot x}}{\sec x}}{\csc x}

( 1 cot x ) sec x csc x , 1 cot x = tan x \Large \frac{\frac{\left(\frac{1}{\cot x}\right)}{\sec x}}{\csc x},~ \frac{1}{\cot x} = \tan x

( tan x sec x ) csc x , tan x sec x = tan x cos x = sin x \Large \frac{\left(\frac{\tan x}{\sec x}\right)}{\csc x},~ \frac{\tan x}{\sec x} = \tan x \cos x = \sin x

sin x csc x , sin x sin x = sin 2 x \Large \frac{\sin x}{\csc x},~ \sin x \sin x = \sin^2 x

sin 2 x \Large \boxed{\sin^2 x}

Anyone pls tell me the meaning of cscx in this question.? Is cscx=cosx÷sinx÷cosx?

Hitixa Raj - 4 years, 6 months ago

Log in to reply

csc ( x ) \csc(x) is short for c o s e c ( x ) cosec(x) which is equal to 1 sin ( x ) \frac{1}{\sin(x)} .

So

sin ( x ) csc ( x ) = sin ( x ) 1 sin ( x ) = sin ( x ) sin ( x ) 1 = sin 2 ( x ) \frac{\sin(x)}{\csc(x)} = \frac{\sin(x)}{\frac{1}{\sin(x)}} = \sin(x) \cdot \frac{\sin(x)}{1} = \sin^2(x)

Jack Rawlin - 4 years, 6 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...