Floors and Ceilings 2 - Room on Ceiling, Floor on Room

Calculus Level 5

0 ( x x x x ) d x \large \int_0^\infty \left ( \frac x{\lceil x \rceil} - \frac {\lfloor x \rfloor}x \right) \, dx

Given that the integral above can be expressed as p q ln ( q π ) r s γ t \frac pq \ln(q \pi) - \frac rs \gamma ^t for natural numbers p , q , r , s , t p,q,r,s,t with r , s r,s coprime.

Find the value of the p + 2 q + 3 r + 4 s + 5 t p+2q+3r+4s+5t .

Details and Assumptions :

γ \gamma is the Euler-Mascheroni constant, which is equals to lim m ( ln ( m + 1 ) + n = 1 m 1 n ) \displaystyle \lim_{m\to\infty} \left(-\ln(m+1) + \sum_{n=1}^m \frac1n \right) .


The answer is 21.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Aman Rajput
Jun 9, 2015

0 x x x x d x \displaystyle\int\limits_{0}^{\infty} \frac{x}{\lceil x \rceil} - \frac{\lfloor x \rfloor}{x} dx

Let I 1 = 0 x x d x \displaystyle I_1 = \int\limits_{0}^{\infty} {\frac{x}{\lceil x \rceil}} dx and I 2 = 0 x x d x \displaystyle I_2 = \int\limits_0^{\infty} {\frac{\lfloor x \rfloor}{x}} dx

Breaking at the integral points I 1 = lim n [ 0 1 x 1 d x + 1 2 x 2 d x + 2 3 x 3 d x + . . . . . . . . . + n 1 n x n d x ] I_1 = \displaystyle\lim_{n \to \infty} [\int\limits_0^1 {\frac{x}{1}} dx + \int\limits_1^2 {\frac{x}{2}} dx + \int\limits_2^3 {\frac{x}{3}} dx + ......... + \int\limits_{n-1}^{n} {\frac{x}{n}} dx] = lim n [ r = 1 n ( 1 1 2 r ) ] =\displaystyle\lim_{n \to \infty} [\sum_{r=1}^{n} (1 - \frac{1}{2r})] = lim n ( n H n / 2 ) =\displaystyle\lim_{n \to \infty} (n - H_n/2)

The series expansion of the above expression is :

I 1 = n + 1 2 log ( 1 2 ) 1 2 γ 1 4 n + 1 240 n 4 + . . . . . \displaystyle I_1 = n + \frac{1}{2}\log(\frac{1}{2}) - \frac{1}{2}\gamma - \frac{1}{4n} + \frac{1}{240n^4} + . . . . .

SIMILARLY , Breaking at the integral points for the other integral I 2 I_2 , we get

I 2 = lim n [ 0 1 0 x d x + 1 2 1 x d x + 2 3 2 x d x + . . . . . . . . + n 1 n n 1 x d x I_2 = \displaystyle\lim_{n \to \infty} [\int\limits_0^1 {\frac{0}{x}} dx + \int\limits_1^2 {\frac{1}{x}} dx + \int\limits_2^3 {\frac{2}{x}} dx + ........ + \int\limits_{n-1}^{n} {\frac{n-1}{x}} dx = lim n [ r = 1 n 1 r log ( r + 1 r ) ] =\displaystyle\lim_{n \to \infty}[\sum_{r=1}^{n-1} r\log(\frac{r+1}{r})]

The series expansion of the above expression is :

I 2 = n ( log ( 1 n ) log ( n ) + 1 ) + 1 2 log ( 1 2 n π ) 1 12 n + 1 360 n 3 + . . . . . . . . \displaystyle I_2 = n(-\log(\frac{1}{n}) - \log(n) + 1) + \frac{1}{2}\log(\frac{1}{2n\pi}) - \frac{1}{12n} + \frac{1}{360n^3} + . . . . . . . . I 2 = n + 1 2 log ( 1 2 n π ) 1 12 n + 1 360 n 3 + . . . . . . . . \displaystyle I_2 = n + \frac{1}{2}\log(\frac{1}{2n\pi}) - \frac{1}{12n} + \frac{1}{360n^3} + . . . . . . . .

Therefore, I 1 I 2 = n n + 1 2 ( log ( 1 n ) log ( 1 2 n π ) ) 1 2 γ 1 6 n + . . . . . . . \displaystyle I_1 - I_2 = n - n + \frac{1}{2} (\log(\frac{1}{n}) - \log(\frac{1}{2n\pi})) - \frac{1}{2}\gamma - \frac{1}{6n} + ....... (other terms which will coverge to zero as n tends to infinity ) I 1 I 2 = 1 2 log ( 2 π ) 1 2 γ + 0 + 0 + . . . . . \displaystyle I_1 - I_2 = \frac{1}{2}\log(2\pi) - \frac{1}{2}\gamma + 0 + 0 + . . . . .

Hence, p + 2 q + 3 r + 4 s + 5 t = 1 + 4 + 3 + 8 + 5 = 21 \displaystyle p + 2q + 3r + 4s + 5t = 1 + 4 + 3 + 8 + 5 = 21

The required answer is 21 \displaystyle 21 .

Thanks for reading the solution . :)

Nice! I did it differently. Did the same till the end but then actually tried to work out the sum(considering ζ ( 0 ) \zeta'(0) , then some approximations and so on). I am not posting my work because I think the given solutions are better and must be preferred.

Kartik Sharma - 6 years ago

Log in to reply

There's no harm in posting your solution. We can also learn from longer solutions too you know? ;)

Pi Han Goh - 6 years ago

Log in to reply

Oh sure! You never know a Brilliantian and there is no measure of his intelligence! I have posted it now! Check it out and please review it!

Kartik Sharma - 6 years ago

Log in to reply

@Kartik Sharma @Pi Han Goh Please review the solution. I am extremely sorry for disturbing you.

Kartik Sharma - 6 years ago

Very nice!

User 123 - 6 years ago
Kartik Sharma
Jun 10, 2015

Nice problem!

0 ( x x x x ) d x \displaystyle \int \limits_{0}^{\infty}{\left(\frac{x}{\lceil x \rceil} - \frac{\lfloor x \rfloor}{x} \right)} dx

We can write it as -

k = 0 ( k k + 1 x x k k + 1 x x ) \displaystyle \sum_{k=0}^{\infty}{\left(\int \limits_{k}^{k+1}{\frac{x}{\lceil x \rceil}} - \int \limits_{k}^{k+1}{\frac{\lfloor x \rfloor}{x}}\right)}

k = 0 ( 1 k + 1 k k + 1 x k k k + 1 1 x ) \displaystyle \sum_{k=0}^{\infty}{\left(\frac{1}{k+1}\int \limits_{k}^{k+1}{x} - k\int \limits_{k}^{k+1}{\frac{1}{x}}\right)}

Let's straightaway do the integral and convert it into a sum,

k = 0 2 k + 1 2 k + 2 k = 0 k l n ( k + 1 ) + k = 0 k l n k \displaystyle \sum_{k=0}^{\infty}{\frac{2k+1}{2k+2}} - \sum_{k=0}^{\infty}{k ln(k+1)} + \sum_{k=0}^{\infty}{k lnk}

k = 0 1 k = 1 1 2 k k = 1 k l n k + k = 1 l n ( k ) + k = 0 k l n k \displaystyle \sum_{k=0}^{\infty}{1} - \sum_{k=1}^{\infty}{\frac{1}{2k}} - \sum_{k=1 }^{\infty}{k lnk} + \sum_{k=1}^{\infty}{ln(k)} + \sum_{k=0}^{\infty}{k lnk}

Now, we must consider one series which is famously known as Zeta function -

ζ ( s ) = n = 1 1 n s \displaystyle \zeta(s) = \sum_{n=1}^{\infty}{\frac{1}{{n}^{s}}}

Differentiate both sides w.r.t. s, we get

ζ ( s ) = n = 1 l n ( n ) n s \displaystyle \zeta'(s) = \sum_{n=1}^{\infty}{-\frac{ln(n)}{{n}^{s}}}

We want one value i.e. ζ ( 0 ) = 1 2 l n ( 2 π ) \displaystyle \zeta'(0) = \frac{-1}{2} ln(2\pi)

Hence, we have got the value of the sum k = 1 l n ( k ) \displaystyle \sum_{k=1}^{\infty}{ln(k)}

We can write our sum

1 2 l n ( 2 π ) 1 2 ( lim n > k = 1 n 1 k l n ( n ) ) \displaystyle \frac{1}{2} ln(2\pi) - \frac{1}{2}(\lim_{n->\infty}{\sum_{k=1}^{n}{\frac{1}{k}} - ln(n)})

which is just

1 2 l n ( 2 π ) 1 2 γ \displaystyle \frac{1}{2} ln(2\pi) - \frac{1}{2}\gamma

The value of ζ ( 0 ) \zeta'(0) is actually already found and I have just substituted the value.

Kartik Sharma - 6 years ago

4th latex line: + k = 0 k ln k \ldots \displaystyle + \sum_{k=0}^\infty k \ln k ? How is it defined at k = 0 k= 0 ?

Pi Han Goh - 6 years ago

Log in to reply

We'd take the limit at k = 0 k=0 and it comes out to be just 0 0 . Thanks, I forgot to write that.

Kartik Sharma - 6 years ago

Log in to reply

Even if that's the case, you need to rewrite that line and the following line. But nonetheless, interesting read!

Pi Han Goh - 6 years ago
Led Tasso
Jun 8, 2015

S o r r y f o r m y l e n g t h y p r o o f . Sorry\quad for\quad my\quad lengthy\quad proof.

O u r i n t e g r a l c a n b e w r i t t e n a s n = 0 n n + 1 ( x x x x ) . T h i s c a n a g a i n b e w r i t t e n a s n = 0 n n + 1 ( x n + 1 n x ) = n = 0 ( 1 2 2 n + 1 n + 1 n ln ( n + 1 n ) ) W e r e g o n n a r e w r i t e t h e a b o v e s u m m a t i o n a s l i m m n = 0 m ( 1 2 2 n + 1 n + 1 n ln ( n + 1 n ) ) = l i m m n = 0 m ( 1 1 2 n + 2 ( n ln ( n + 1 ) n ln ( n ) ) ) = l i m m ( ( m + 1 ) ( m ln ( m + 1 ) + ln ( m ! ) 1 2 n = 0 1 n + 1 ) I v e n o t s t a t e d h o w t o s u m n ln ( n + 1 ) n ln ( n ) a s i t s h o u l d b e e a s y f o r a L e v e l 4 o r 5 s t u d e n t . = l i m m ( ( m + 1 ) m ln ( m + 1 ) + ln ( m ! ) 1 2 ln ( m + 1 ) ( 1 2 n = 1 1 n 1 2 ln ( m + 1 ) ) ) = lim m ln e m + 1 m ! m + 1 m + 0.5 γ 2 Our\quad integral\quad can\quad be\quad written\quad as\quad \sum _{ n=0 }^{ \infty }{ \int _{ n }^{ n+1 }{ \left( \frac { x }{ \left\lceil x \right\rceil } -\frac { \left\lfloor x \right\rfloor }{ x } \right) . } } \\ \\ This\quad can\quad again\quad be\quad written\quad as\quad \sum _{ n=0 }^{ \infty }{ \int _{ n }^{ n+1 }{ \left( \frac { x }{ n+1 } -\frac { n }{ x } \right) \quad } } \\ \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad =\sum _{ n=0 }^{ \infty }{ \left( \frac { 1 }{ 2 } \frac { 2n+1 }{ n+1 } -n\ln { \left( \frac { n+1 }{ n } \right) } \right) } \\ \\ We're\quad gonna\quad rewrite\quad the\quad above\quad summation\quad as\quad \\ \quad \quad \quad \quad \quad \quad \quad \quad \underset { m\rightarrow \infty }{ lim } \sum _{ n=0 }^{ m }{ \left( \frac { 1 }{ 2 } \frac { 2n+1 }{ n+1 } -n\ln { \left( \frac { n+1 }{ n } \right) } \right) } \\ \quad \quad \quad \quad \quad \quad \quad =\underset { m\rightarrow \infty }{ lim } \sum _{ n=0 }^{ m }{ \left( 1-\frac { 1 }{ 2n+2 } -\left( n\ln { (n+1 } \right) -n\ln { (n) } ) \right) } \\ \quad \quad \quad \quad \quad =\underset { m\rightarrow \infty }{ lim } \left( (m+1)-(m\ln { (m+1) } +\ln { (m! } \right) -\frac { 1 }{ 2 } \sum _{ n=0 }^{ \infty }{ \frac { 1 }{ n+1 } } )\\ I've\quad not\quad stated\quad how\quad to\quad sum\quad n\ln { (n+1) } -n\ln { (n) } \\ as\quad it\quad should\quad be\quad easy\quad for\quad a\quad Level\quad 4\quad or\quad 5\quad student.\\ \\ =\underset { m\rightarrow \infty }{ lim } \left( (m+1)-m\ln { (m+1) } +\ln { (m! } \right) -\frac { 1 }{ 2 } \ln { (m+1) } -(\frac { 1 }{ 2 } \sum _{ n=1 }^{ \infty }{ \frac { 1 }{ n } } -\frac { 1 }{ 2 } \ln { (m+1) } ))\\ =\lim _{ m\rightarrow \infty }{ \ln { \frac { { e }^{ m+1 }m! }{ { m+1 }^{ m+0.5 } } } } -\frac { \gamma }{ 2 }

N o w Now u s i n g using Stirling's Formula , , f o r for v e r y very l a r g e large v a l u e s values o f of m , m, m ! m! t e n d s tends t o to 2 π m ( m e ) m . \sqrt { 2\pi m } { \left( \frac { m }{ e } \right) }^{ m }.

U s i n g t h i s i n o u r l i m i t , w e g e t i t a s lim m ln e m + 1 2 π m ( m e ) m ( m + 1 ) ( m + 0.5 ) γ 2 A s t h e l o g a r i t h m f u n c t i o n i s c o n t i n u o u s o u r l i m i t c a n b e w r i t t e n a s ln ( lim m e m + 1 2 π m ( m e ) m ( m + 1 ) ( m + 0.5 ) ) γ 2 = ln ( lim m e 2 π ( m m + 1 ) m + 0.5 ) γ 2 = ln ( lim m e 2 π ( 1 1 m + 1 ) m + 0.5 ) γ 2 = ln ( lim m e 2 π ( 1 1 m + 1 ) m + 0.5 m + 1 ) γ 2 . C o m p u t i n g t h i s l i m i t , w e g e t ln ( e 2 π e 1 ) γ 2 = 1 2 ln ( 2 π ) γ 2 . H e n c e p = 1 , q = 2 , r = 1 , s = 2 , t = 1 a n d p + 2 q + 3 r + 4 s + 5 t = 21 Using\quad this\quad in\quad our\quad limit,\quad we\quad get\quad it\quad as\quad \\ \lim _{ m\rightarrow \infty }{ \ln { \frac { { e }^{ m+1 }\sqrt { 2\pi m } { \left( \frac { m }{ e } \right) }^{ m } }{ { \left( m+1 \right) }^{ \left( m+0.5 \right) } } } } -\frac { \gamma }{ 2 } \\ As\quad the\quad logarithm\quad function\quad is\quad continuous\quad our\quad limit\quad can\quad be\quad \\ written\quad as\quad \ln { \left( \lim _{ m\rightarrow \infty }{ \frac { { e }^{ m+1 }\sqrt { 2\pi m } { \left( \frac { m }{ e } \right) }^{ m } }{ { \left( m+1 \right) }^{ \left( m+0.5 \right) } } } \right) } -\frac { \gamma }{ 2 } \\ \\ =\ln { \left( \lim _{ m\rightarrow \infty }{ e\sqrt { 2\pi } { \left( \frac { m }{ m+1 } \right) }^{ m+0.5 } } \right) } -\frac { \gamma }{ 2 } \quad \\ =\ln { \left( \lim _{ m\rightarrow \infty }{ e\sqrt { 2\pi } { \left( 1-\frac { 1 }{ m+1 } \right) }^{ m+0.5 } } \right) } -\frac { \gamma }{ 2 } \\ \\ =\ln { \left( \lim _{ m\rightarrow \infty }{ e\sqrt { 2\pi } { \left( 1-\frac { 1 }{ m+1 } \right) }^{ -\frac { m+0.5 }{ m+1 } } } \right) } -\frac { \gamma }{ 2 } .\quad \\ Computing\quad this\quad limit,\quad we\quad get\quad \\ \\ \ln { \left( e\sqrt { 2\pi } { e }^{ -1 } \right) } -\quad \frac { \gamma }{ 2 } =\quad \boxed { \frac { 1 }{ 2 } \ln { (2\pi )-\frac { \gamma }{ 2 } } } .\\ \\ Hence\quad p=1,q=2,r=1,s=2,t=1\quad \\ and\quad p+2q+3r+4s+5t=\boxed { 21 }

P h e w ! T h a n k s f o r r e a d i n g t h e f u l l s o l u t i o n . Phew!\quad Thanks\quad for\quad reading\quad the\quad full\quad solution.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...