∫ 0 ∞ ( ⌈ x ⌉ x − x ⌊ x ⌋ ) d x
Given that the integral above can be expressed as q p ln ( q π ) − s r γ t for natural numbers p , q , r , s , t with r , s coprime.
Find the value of the p + 2 q + 3 r + 4 s + 5 t .
Details and Assumptions :
γ is the Euler-Mascheroni constant, which is equals to m → ∞ lim ( − ln ( m + 1 ) + n = 1 ∑ m n 1 ) .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Nice! I did it differently. Did the same till the end but then actually tried to work out the sum(considering ζ ′ ( 0 ) , then some approximations and so on). I am not posting my work because I think the given solutions are better and must be preferred.
Log in to reply
There's no harm in posting your solution. We can also learn from longer solutions too you know? ;)
Log in to reply
Oh sure! You never know a Brilliantian and there is no measure of his intelligence! I have posted it now! Check it out and please review it!
Log in to reply
@Kartik Sharma – @Pi Han Goh Please review the solution. I am extremely sorry for disturbing you.
Very nice!
Nice problem!
0 ∫ ∞ ( ⌈ x ⌉ x − x ⌊ x ⌋ ) d x
We can write it as -
k = 0 ∑ ∞ ⎝ ⎛ k ∫ k + 1 ⌈ x ⌉ x − k ∫ k + 1 x ⌊ x ⌋ ⎠ ⎞
k = 0 ∑ ∞ ⎝ ⎛ k + 1 1 k ∫ k + 1 x − k k ∫ k + 1 x 1 ⎠ ⎞
Let's straightaway do the integral and convert it into a sum,
k = 0 ∑ ∞ 2 k + 2 2 k + 1 − k = 0 ∑ ∞ k l n ( k + 1 ) + k = 0 ∑ ∞ k l n k
k = 0 ∑ ∞ 1 − k = 1 ∑ ∞ 2 k 1 − k = 1 ∑ ∞ k l n k + k = 1 ∑ ∞ l n ( k ) + k = 0 ∑ ∞ k l n k
Now, we must consider one series which is famously known as Zeta function -
ζ ( s ) = n = 1 ∑ ∞ n s 1
Differentiate both sides w.r.t. s, we get
ζ ′ ( s ) = n = 1 ∑ ∞ − n s l n ( n )
We want one value i.e. ζ ′ ( 0 ) = 2 − 1 l n ( 2 π )
Hence, we have got the value of the sum k = 1 ∑ ∞ l n ( k )
We can write our sum
2 1 l n ( 2 π ) − 2 1 ( n − > ∞ lim k = 1 ∑ n k 1 − l n ( n ) )
which is just
2 1 l n ( 2 π ) − 2 1 γ
The value of ζ ′ ( 0 ) is actually already found and I have just substituted the value.
4th latex line: … + k = 0 ∑ ∞ k ln k ? How is it defined at k = 0 ?
Log in to reply
We'd take the limit at k = 0 and it comes out to be just 0 . Thanks, I forgot to write that.
Log in to reply
Even if that's the case, you need to rewrite that line and the following line. But nonetheless, interesting read!
S o r r y f o r m y l e n g t h y p r o o f .
O u r i n t e g r a l c a n b e w r i t t e n a s ∑ n = 0 ∞ ∫ n n + 1 ( ⌈ x ⌉ x − x ⌊ x ⌋ ) . T h i s c a n a g a i n b e w r i t t e n a s ∑ n = 0 ∞ ∫ n n + 1 ( n + 1 x − x n ) = ∑ n = 0 ∞ ( 2 1 n + 1 2 n + 1 − n ln ( n n + 1 ) ) W e ′ r e g o n n a r e w r i t e t h e a b o v e s u m m a t i o n a s m → ∞ l im ∑ n = 0 m ( 2 1 n + 1 2 n + 1 − n ln ( n n + 1 ) ) = m → ∞ l im ∑ n = 0 m ( 1 − 2 n + 2 1 − ( n ln ( n + 1 ) − n ln ( n ) ) ) = m → ∞ l im ( ( m + 1 ) − ( m ln ( m + 1 ) + ln ( m ! ) − 2 1 ∑ n = 0 ∞ n + 1 1 ) I ′ v e n o t s t a t e d h o w t o s u m n ln ( n + 1 ) − n ln ( n ) a s i t s h o u l d b e e a s y f o r a L e v e l 4 o r 5 s t u d e n t . = m → ∞ l im ( ( m + 1 ) − m ln ( m + 1 ) + ln ( m ! ) − 2 1 ln ( m + 1 ) − ( 2 1 ∑ n = 1 ∞ n 1 − 2 1 ln ( m + 1 ) ) ) = lim m → ∞ ln m + 1 m + 0 . 5 e m + 1 m ! − 2 γ
N o w u s i n g Stirling's Formula , f o r v e r y l a r g e v a l u e s o f m , m ! t e n d s t o 2 π m ( e m ) m .
U s i n g t h i s i n o u r l i m i t , w e g e t i t a s lim m → ∞ ln ( m + 1 ) ( m + 0 . 5 ) e m + 1 2 π m ( e m ) m − 2 γ A s t h e l o g a r i t h m f u n c t i o n i s c o n t i n u o u s o u r l i m i t c a n b e w r i t t e n a s ln ( lim m → ∞ ( m + 1 ) ( m + 0 . 5 ) e m + 1 2 π m ( e m ) m ) − 2 γ = ln ( lim m → ∞ e 2 π ( m + 1 m ) m + 0 . 5 ) − 2 γ = ln ( lim m → ∞ e 2 π ( 1 − m + 1 1 ) m + 0 . 5 ) − 2 γ = ln ( lim m → ∞ e 2 π ( 1 − m + 1 1 ) − m + 1 m + 0 . 5 ) − 2 γ . C o m p u t i n g t h i s l i m i t , w e g e t ln ( e 2 π e − 1 ) − 2 γ = 2 1 ln ( 2 π ) − 2 γ . H e n c e p = 1 , q = 2 , r = 1 , s = 2 , t = 1 a n d p + 2 q + 3 r + 4 s + 5 t = 2 1
P h e w ! T h a n k s f o r r e a d i n g t h e f u l l s o l u t i o n .
Problem Loading...
Note Loading...
Set Loading...
0 ∫ ∞ ⌈ x ⌉ x − x ⌊ x ⌋ d x
Let I 1 = 0 ∫ ∞ ⌈ x ⌉ x d x and I 2 = 0 ∫ ∞ x ⌊ x ⌋ d x
Breaking at the integral points I 1 = n → ∞ lim [ 0 ∫ 1 1 x d x + 1 ∫ 2 2 x d x + 2 ∫ 3 3 x d x + . . . . . . . . . + n − 1 ∫ n n x d x ] = n → ∞ lim [ r = 1 ∑ n ( 1 − 2 r 1 ) ] = n → ∞ lim ( n − H n / 2 )
The series expansion of the above expression is :
I 1 = n + 2 1 lo g ( 2 1 ) − 2 1 γ − 4 n 1 + 2 4 0 n 4 1 + . . . . .
SIMILARLY , Breaking at the integral points for the other integral I 2 , we get
I 2 = n → ∞ lim [ 0 ∫ 1 x 0 d x + 1 ∫ 2 x 1 d x + 2 ∫ 3 x 2 d x + . . . . . . . . + n − 1 ∫ n x n − 1 d x = n → ∞ lim [ r = 1 ∑ n − 1 r lo g ( r r + 1 ) ]
The series expansion of the above expression is :
I 2 = n ( − lo g ( n 1 ) − lo g ( n ) + 1 ) + 2 1 lo g ( 2 n π 1 ) − 1 2 n 1 + 3 6 0 n 3 1 + . . . . . . . . I 2 = n + 2 1 lo g ( 2 n π 1 ) − 1 2 n 1 + 3 6 0 n 3 1 + . . . . . . . .
Therefore, I 1 − I 2 = n − n + 2 1 ( lo g ( n 1 ) − lo g ( 2 n π 1 ) ) − 2 1 γ − 6 n 1 + . . . . . . . (other terms which will coverge to zero as n tends to infinity ) I 1 − I 2 = 2 1 lo g ( 2 π ) − 2 1 γ + 0 + 0 + . . . . .
Hence, p + 2 q + 3 r + 4 s + 5 t = 1 + 4 + 3 + 8 + 5 = 2 1
The required answer is 2 1 .
Thanks for reading the solution . :)