Flower-like loop

The figure shows a circular loop of radius R R (black curve) that has been harmonically deformed into a flower-like curve (blue curve) given by the equation in polar coordinates r ( θ ) = R ( 1 + ε cos ( n θ ) ) with ε = 0.5 and n = 5. r(\theta)= R (1+\varepsilon\cos(n \theta)) \quad \text{with} \quad \varepsilon=0.5 \quad \text{and} \quad n=5.

A current I 0 I_{0} flowing in the circular loop produces a magnetic field B = 1 mT B=1~\text{mT} at the center O. Determine the magnitude of the magnetic field in mT at O when the same current, I 0 I_{0} , flows in the flower-like loop. The following integral may be useful: 0 2 π d x 1 + ε cos ( x ) = 2 π 1 ε 2 . \int_{0}^{2\pi}\frac{dx}{1+\varepsilon \cos(x)}=\frac{2\pi}{\sqrt{1-\varepsilon^{2}}}.


The answer is 1.15.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

According to Biot-Savart's law: d B 0 = μ 0 4 π I 0 d l × r r 3 d\overrightarrow{B_0}=\frac{\mu_0}{4\pi} \frac{I_0 \overrightarrow{dl} \times \overrightarrow{r}}{r^3} .

Therefore, d B 0 = μ 0 4 π I 0 ( r d θ ) r r 3 = μ 0 4 π I 0 d θ r = μ 0 I 0 4 π R d θ 1 + ε cos ( n θ ) dB_0=\frac{\mu_0}{4\pi} \frac{I_0 (r d\theta) r}{r^3}=\frac{\mu_0}{4\pi} \frac{I_0 d\theta}{r}=\frac{\mu_0 I_0}{4\pi R} \frac{d\theta}{1+\varepsilon \cos (n\theta)}

Therefore, B 0 = 0 2 π μ 0 I 0 4 π R d θ 1 + ε cos ( n θ ) B_0=\int\limits_0^{2\pi} \frac{\mu_0 I_0}{4\pi R} \frac{d\theta}{1+\varepsilon \cos (n\theta)} .

B 0 = μ 0 I 0 2 R 1 ε 2 = B 1 ε 2 = 1.15 ( m T ) B_0=\frac{\mu_0 I_0}{2R \sqrt{1-\varepsilon^2}}=\frac{B}{\sqrt{1-\varepsilon^2}}=1.15(mT) .

I think you made a raw assumption here that d l × r = ( r d θ ) ( r ) d\vec{l} \times \vec{r} = (rd\theta)(r) . The other two solutions explain how it was got .

varun kaushik - 7 years, 7 months ago

how can you directly say that cross product of d l × r dl \times r is rdθ * r without taking into account the angle between them??

Divyaanand Sinha - 7 years, 7 months ago

Log in to reply

Ok, it was my fault, I thought it was obvious and didn't explain, thanks for your comments.

I will explain it here:

Because it's cross product, d l × r | \overrightarrow{dl} \times \overrightarrow{r} | will be the product of r r and the component of d l \overrightarrow{dl} which is perpendicular to r \overrightarrow{r} , so it is ( r d θ ) r (rd\theta)r .

Đinh Ngọc Hải - 7 years, 7 months ago

Log in to reply

this is really nice!!! (i really sweated it out finding the equation of tangent and then finding perpendicular distance from center. I was actually considering component of r \vec{r} perpendicular to d l d\vec{l} , i should have thought the other way round.)

jatin yadav - 7 years, 7 months ago

Log in to reply

@Jatin Yadav Thank you very much Jatin.

Đinh Ngọc Hải - 7 years, 7 months ago

I actually found this problem quite easier than the other ones. Simple integration stuff. :)

Nicely done Dinh!

Pranav Arora - 7 years, 7 months ago

Log in to reply

Thank you Pranav

Đinh Ngọc Hải - 7 years, 7 months ago
Lucas Guimarães
Oct 13, 2013

The Biot-Savart equation is given by:

B = μ 0 I 0 4 π C d l × r ^ r 2 \vec{B} = \frac{\mu_0 I_0}{4 \pi} \int_{C} \frac{\vec{dl} \times \hat{r}}{r^2}

We can write the line element of a circuit in the z = 0 z=0 plane in cylindrical coordinates as:

d l = d r r ^ + r d θ θ ^ \vec{dl} = dr \;\hat{r} + r\; d\theta \; \hat{\theta}

Then the cross product d l × r ^ \vec{dl} \times \hat{r} in the Biot-Savart law is:

d l × r ^ = r ^ θ ^ z ^ d r r d θ 0 1 0 0 = r d θ z ^ \vec{dl} \times \hat{r} = \begin{vmatrix} \hat{r} & \hat{\theta} & \hat{z} \\ dr &r\; d\theta &0 \\ 1 & 0 & 0 \end{vmatrix} = - r\; d\theta \; \hat{z}

B = μ 0 I 0 4 π C r d θ z ^ r 2 \vec{B} = \frac{\mu_0 I_0}{4 \pi} \int_{C} \frac{- r\; d\theta \; \hat{z}}{r^2}

B = μ 0 I 0 4 π C d θ r \left|\vec{B}\right| = \frac{\mu_0 I_0}{4 \pi} \int_{C} \frac{d\theta}{r}

In the circular loop case r ( θ ) = R r(\theta) = R :

B 1 = μ 0 I 0 4 π 0 2 π d θ R \left|\vec{B_1}\right| = \frac{\mu_0 I_0}{4 \pi} \int_{0}^{2\pi} \frac{d\theta}{R}

B 1 = μ 0 I 0 2 R \left|\vec{B_1}\right| = \frac{\mu_0 I_0}{2 R}

In the flower-like curve case r ( θ ) = R ( 1 + ε c o s ( n θ ) ) r(\theta) = R(1+\varepsilon cos(n\theta))

B 2 = μ 0 I 0 4 π 0 2 π d θ R ( 1 + ε c o s ( n θ ) ) \left|\vec{B_2}\right| = \frac{\mu_0 I_0}{4 \pi} \int_{0}^{2\pi} \frac{d\theta}{R(1+\varepsilon cos(n\theta))}

B 2 = μ 0 I 0 4 R π 0 2 π d θ 1 + c o s ( 5 θ ) 2 \left|\vec{B_2}\right| = \frac{\mu_0 I_0}{4 R \pi} \int_{0}^{2\pi} \frac{d\theta}{1+ \frac{cos(5\theta)}{2}}

B 2 = μ 0 I 0 4 R π 4 π 3 \left|\vec{B_2}\right| = \frac{\mu_0 I_0}{4 R \pi} \frac{4 \pi}{\sqrt{3}}

B 2 = μ 0 I 0 2 π R 2 3 3 \left|\vec{B_2}\right| = \frac{\mu_0 I_0}{2 \pi R} \frac{2\sqrt{3}}{3}

B 2 = B 1 2 3 3 \left|\vec{B_2}\right| = \left|\vec{B_1}\right| \frac{2\sqrt{3}}{3}

B 2 = 1 m T × 2 3 3 \left|\vec{B_2}\right| = 1\; mT \; \times \frac{2\sqrt{3}}{3}

B 2 = 1.15 m T \left|\vec{B_2}\right| = 1.15 \; mT

Jatin Yadav
Oct 15, 2013

Let us consider a small current carrying element at an angle θ \theta at a distance r r from center.Let us assume center to be ( 0 , 0 ) (0,0) and let the coordinates of this element be ( x 0 , y 0 ) (x_{0},y_{0}) . Now let us extend this element as a big line and let p p denote the length of perpendicular dropped on this line from origin.Since, the small magnetic fields of these elements are in same direction, we can simply add their magnitudes.

d B = μ 0 I 0 d l × r 4 π r 3 = μ 0 I 0 p d l 4 π r 3 |d\vec{B}| = \frac{\mu_{0}I_{0}|d\vec{l} \times \vec{r}|}{4 \pi r^3} = \frac{\mu_{0}I_{0}pdl}{4 \pi r^3} ... ( i ) (i)

Let f ( x ) f^{'}(x) denote the slope of this element.

By simple trigonometry , d l = d x 1 + ( f ( x ) ) 2 dl = dx\sqrt{1 + (f^{'}(x))^2} ..... ( i i ) (ii)

Now, let us write the equation of extended line :

y y 0 = ( x x 0 ) f ( x ) y - y_{0} = (x - x_{0})f^{'}(x) ,

Hence , p = y 0 x 0 f ( x ) 1 + ( f ( x ) ) 2 p = \frac{|y_{0} - x_{0}f^{'}(x)|}{\sqrt{1 + (f^{'}(x))^2}} ... ( i i i ) (iii)

From ( i i ) (ii) and ( i i i ) (iii) , we get :

p d l = y 0 d x x 0 d y pdl = |y_{0}dx - x_{0}dy| ,

Here, use x 0 = r c o s θ x_{0} = rcos\theta , and y 0 = r s i n θ y_{0} = rsin\theta , take derivative and simplify to get

p d l = r 2 d θ pdl = r^2d\theta . Put this value in ( i ) (i) to get :

d B = μ 0 I 0 d θ 4 π r = μ 0 I 0 d θ 4 π R ( 1 + η c o s ( n θ ) ) |d\vec{B}| = \frac{\mu_{0}I_{0}d\theta}{4 \pi r} = \frac{\mu_{0}I_{0}d\theta}{4 \pi R(1 + \eta cos(n\theta))}

B = B c i r c l e 2 π 0 2 π d θ 1 + η c o s ( n θ ) \Rightarrow B = \frac{B_{circle}}{2 \pi} \int_{0}^{2\pi} \frac{d\theta}{1 + \eta cos(n\theta)} = 1.15 B = 1.15 m T 1.15B = \boxed{1.15 mT}

Mark Hennings
Oct 16, 2013

For a current I 0 I_0 flowing in a curve C C , the magnetic field at the point r \mathbf{r} is B ( r ) = μ 0 I 0 4 π C d s × ( r s ) r s 3 \mathbf{B}(\mathbf{r}) \; = \; \frac{\mu_0 I_0}{4\pi}\oint_C \frac{d\mathbf{s} \times (\mathbf{r}-\mathbf{s})}{|\mathbf{r}-\mathbf{s}|^3} Thus the field at the origin is B ( 0 ) = μ 0 I 0 4 π C s × d s s 3 = μ 0 I 0 4 π 0 2 π d θ s k \mathbf{B}(\mathbf{0}) \; = \; \frac{\mu_0I_0}{4\pi}\oint_C \frac{\mathbf{s}\times d\mathbf{s}}{|\mathbf{s}|^3} \; = \; \frac{\mu_0I_0}{4\pi}\int_0^{2\pi} \frac{d\theta}{s} \mathbf{k} where k \mathbf{k} is a unit vector normal to the plane.

For the circular loop the magnitude of the magnetic field at O O is B 1 = μ 0 I 0 4 π 0 2 π d θ R = μ 0 I 0 2 R = 1 mT B_1 \; = \; \frac{\mu_0I_0}{4\pi} \int_0^{2\pi} \frac{d\theta}{R} \; = \; \frac{\mu_0I_0}{2R} \; = \; 1 \mbox{ mT} For the flower-like loop the magnitude of the magnetic field at O O is B 2 = μ 0 I 0 4 π 0 2 π d θ R ( 1 + ε cos n θ ) = μ 0 I 0 4 n π R 0 2 n π d θ 1 + ε cos θ = μ 0 I 0 4 π R 0 2 π d θ 1 + ε cos θ = μ 0 I 0 2 R 1 ε 2 \begin{array}{rcl} B_2 & = & \frac{\mu_0I_0}{4\pi} \int_0^{2\pi} \frac{d\theta}{R(1 + \varepsilon\cos n\theta)} \\ & = & \frac{\mu_0I_0}{4n\pi R} \int_0^{2n\pi}\frac{d\theta}{1 + \varepsilon\cos\theta} \\ & = & \frac{\mu_0I_0}{4\pi R}\int_0^{2\pi}\frac{d\theta}{1 + \varepsilon\cos\theta} \; = \; \frac{\mu_0I_0}{2R\sqrt{1-\varepsilon^2}} \end{array} or 1 1 ε 2 = 2 3 = 1.15 \frac{1}{\sqrt{1-\varepsilon^2}} = \frac{2}{\sqrt{3}} = 1.15 mT.

This would be a derivation for noob :D Starting from Biot Savart’s law d B = μ I 4 π r 2 d l × r ^ d\vec{B}=\frac{\mu I}{4\mathrm{\pi }r^{2}}\, \vec{dl}\, \times \vec{\hat{r}}\, Multiply r for both nominator and denominator and make use of the relation r ^ = r \vec{\hat{r}}=\vec{r} hence,

d B = μ I 4 π r 3 d l × r = μ I 4 π r 3 d l × r B ^ d\vec{B}=\frac{\mu I}{4{\mathrm{\pi }r}^{3}}\, \vec{dl}\, \times \vec{r}=\,\frac{\mu I}{4{\mathrm{\pi }r}^{3}}\, \left| \vec{dl}\, \times \vec{r} \right|\vec{\hat{B}}\, Where B ^ \vec{\hat{B}} is the unit vector of B Observing the quantity d l × r \left| \vec{dl}\, \times \vec{r} \right| , it is the area of the parallelogram constructed from the two vectors. This area is twice the area of the triangle which is formed by the two vectors. The dimensions of this triangle are r, r, and dl. Using Sine rule, this area is 1 2 r 2 d θ \frac{1}{2}r^{2}d\theta . Hence, d l × r = r 2 d θ \left| \vec{dl}\, \times \vec{r} \right|=r^{2}d\theta

d B = μ I 4 π r 3 d l × r B ^ = μ I 4 π r 3 r 2 d θ B ^ = μ I 4 π r d θ B ^ d\vec{B}=\frac{\mu I}{4{\mathrm{\pi }r}^{3}}\, \left| \vec{dl}\, \times \vec{r} \right|\vec{\hat{B}}=\, \frac{\mu I}{4{\mathrm{\pi }r}^{3}}\, r^{2}d\theta \, \vec{\hat{B}}=\, \frac{\mu I}{4\pi r}\, \, d\theta \, \vec{\hat{B}}

B = 0 2 π μ I 4 π r d θ = μ I 4 π 0 2 π d θ R ( 1 + ϵ cos ( n θ ) ) \left| \vec{B} \right|=\int_0^{2\pi } {\frac{\mu I}{4\pi r}\, \, d\theta } =\frac{\mu I}{4\pi }\int_0^{2\pi } \frac{d\theta }{R\left( 1+\epsilon \cos \left( n\theta \right) \right)} = μ I 4 n π R 0 2 n π d ( n θ ) ( 1 + ϵ cos ( n θ ) ) =\frac{\mu I}{4n\pi R}\int_0^{2n\pi } \frac{d(n\theta )}{\left( 1+\epsilon \cos \left( n\theta \right) \right)} = μ I 4 π R 0 2 π d ( n θ ) ( 1 + ϵ cos ( n θ ) ) = μ I 4 π R 2 π 1 ϵ 2 = B d u e t o c i r c u l a r l o o p 1 ϵ 2 = 2 3 1.15 =\frac{\mu I}{4\pi R}\int_0^{2\pi } \frac{d(n\theta )}{\left( 1+\epsilon \cos \left( n\theta \right) \right)} =\frac{\mu I}{4\pi R}\frac{2\pi }{\sqrt {1-\epsilon^{2}} }=\frac{B_{due\, to\, circular\, loop\, }}{\sqrt{1-\epsilon^{2}} }=\frac{2}{\sqrt 3 }\approx 1.15

Minh Quan Le Thien - 7 years, 7 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...