Foundations, part 6

Algebra Level 3

( i + 3 i + 3 ) 2020 + ( i 3 i + 3 ) 2017 + 1 = ? \large \left(\dfrac{i + \sqrt 3}{- i + \sqrt 3}\right)^{2020} + \left(\dfrac{i - \sqrt 3}{i + \sqrt 3}\right)^{2017} + 1 = \, ?


Clarification : i = 1 i=\sqrt{-1} denotes the imaginary unit .


The answer is 0.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Tapas Mazumdar
May 7, 2017

The roots of the quadratic equation x 2 + x + 1 = 0 x^2+x+1 = 0 are given by

ω = 1 + 3 i 2 ω 2 = 1 3 i 2 \omega = \dfrac{-1+\sqrt{3} i}{2} \\ \omega^2 = \dfrac{-1-\sqrt{3} i}{2}

Now, we can see that

{ i + 3 = 2 i ω i + 3 = 2 i ω 2 i 3 = 2 i ω 2 \begin{cases} i + \sqrt{3} &= - 2i \omega \\ - i + \sqrt{3} &= 2i \omega^2 \\ i - \sqrt{3} &= -2i \omega^2 \end{cases}

Thus

( i + 3 i + 3 ) 2020 + ( i 3 i + 3 ) 2017 + 1 = ( 2 i ω 2 i ω 2 ) 2020 + ( 2 i ω 2 2 i ω ) 2017 + 1 = ( 1 ω ) 2020 + ( ω ) 2017 + 1 = 1 ω 2020 + ω 2017 + 1 = ω 2 + ω + 1 = 0 \begin{aligned} {\left( \dfrac{i+\sqrt{3}}{-i+\sqrt{3}} \right)}^{2020} + {\left( \dfrac{i-\sqrt{3}}{i+\sqrt{3}} \right)}^{2017} + 1 &= {\left( \dfrac{-2i \omega}{2i \omega^2} \right)}^{2020} + {\left( \dfrac{-2i \omega^2}{-2i \omega} \right)}^{2017} +1 \\ &= {\left( \dfrac{-1}{\omega} \right)}^{2020} + {\left( \omega \right)}^{2017} +1 \\ &= \dfrac{1}{\omega^{2020}} + \omega^{2017} +1 \\ &= \omega^2 + \omega +1 \\ &= \boxed{0} \end{aligned}

How could you simplify ( 1 ω ) 2020 + ω 2017 + 1 ( \dfrac{1}{\omega} )^{2020} + \omega ^{2017} + 1 into ω 2 + ω + 1 \omega^2 + \omega + 1 ?

Fidel Simanjuntak - 4 years, 1 month ago

Log in to reply

1 ω 2020 = 1 ω = ω 2 ω 3 = ω 2 \dfrac{1}{\omega^{2020}} = \dfrac{1}{\omega} = \dfrac{\omega^2}{\omega^3} = \omega^2

The first equality follows as ω 3 n + 1 = ω \omega^{3n+1} = \omega .

Tapas Mazumdar - 4 years, 1 month ago

Log in to reply

I still dont get it.. Can you help me?

Fidel Simanjuntak - 4 years, 1 month ago

Log in to reply

@Fidel Simanjuntak ω \omega and ω 2 \omega^2 are both the complex cube roots of unity. Now, if z z is a cube root of unity, then it must satisfy z 3 = 1 z^3 = 1 . It is not hard to see that further, we can write z 3 n = 1 z^{3n} = 1 where n N n \in \mathbb{N} . Now, based on the property above, we see that ω 3 n + 1 = ω 3 n ω = ω \omega^{3n+1} = \omega^{3n} \cdot \omega = \omega and ω 3 n + 2 = ω 3 n ω 2 = ω 2 \omega^{3n+2} = \omega^{3n} \cdot \omega^2 = \omega^2 . Thus, we can write

1 ω 2020 = 1 ω 3 × 673 + 1 = 1 ω \dfrac{1}{\omega^{2020}} = \dfrac{1}{\omega^{3 \times 673 +1}} = \dfrac 1\omega

Further, we have

1 ω = 1 ω ω 2 ω 2 = ω 2 ω 3 = ω 2 \dfrac{1}{\omega} = \dfrac{1}{\omega} \cdot \dfrac{\omega^2}{\omega^2} = \dfrac{\omega^2}{\omega^3} = \omega^2

Also ω 2017 = ω 3 × 672 + 1 = ω \omega^{2017} = \omega^{3 \times 672 +1} = \omega

Tapas Mazumdar - 4 years, 1 month ago

Log in to reply

@Tapas Mazumdar Ah, I see, thanks!

Fidel Simanjuntak - 4 years, 1 month ago

x = ( i + 3 i + 3 ) 2020 + ( i 3 i + 3 ) 2017 + 1 = ( 2 ( 3 2 + 1 2 i ) 2 ( 3 2 1 2 i ) ) 2020 + ( 2 ( 3 2 + 1 2 i ) 2 ( 3 2 + 1 2 i ) ) 2017 + 1 By Euler’s formula: e θ i = cos θ + i sin θ = ( e π 6 i e π 6 i ) 2020 + ( e 5 π 6 i e π 6 i ) 2017 + 1 = ( e π 3 i ) 2020 + ( e 2 π 3 i ) 2017 + 1 = e 673 π 3 i + e 1344 2 π 3 i + 1 = e 4 π 3 i + e 2 π 3 i + 1 = 1 2 3 2 i 1 2 + 3 2 i + 1 = 0 \large \begin{aligned} x & = \left(\frac {i+\sqrt 3}{-i+\sqrt 3} \right)^{2020} + \left(\frac {i-\sqrt 3}{i+\sqrt 3} \right)^{2017} + 1 \\ & = \left(\frac {2\left( \frac {\sqrt 3}2 + \frac 12i \right)}{2\left( \frac {\sqrt 3}2 - \frac 12i \right)} \right)^{2020} + \left(\frac {2\left(-\frac {\sqrt 3}2 + \frac 12i \right)}{2\left( \frac {\sqrt 3}2 + \frac 12i \right)} \right)^{2017} + 1 & \small \color{#3D99F6} \text{By Euler's formula: } e^{\theta i} = \cos \theta + i \sin \theta \\ & = \left(\frac {e^{\frac \pi 6 i}}{e^{-\frac \pi 6 i}} \right)^{2020} + \left(\frac {e^{\frac {5\pi} 6 i}}{e^{\frac \pi 6 i}} \right)^{2017} + 1 \\ & = \left(e^{\frac \pi 3 i} \right)^{2020} + \left(e^{\frac {2\pi} 3 i} \right)^{2017} + 1 \\ & = e^{673\frac \pi 3 i} + e^{1344\frac {2\pi} 3 i} + 1 \\ & = e^{\frac {4\pi} 3 i} + e^{\frac {2\pi} 3 i} + 1 \\ & = - \frac 12 - \frac {\sqrt 3}2i - \frac 12 + \frac {\sqrt 3}2i + 1 \\ & = \boxed{0} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...