Fractional part integration

Calculus Level 5

1 { x } x 5 d x \large \int_1^\infty \dfrac{\{ x \}} {x^5} \, \mathrm{d}x

If the value of the integral above is equal to 1 A π B C \dfrac1A - \dfrac{\pi^B}C for positive integers A A , B B and C C , find A + B + C A+B+C .

Bonus : Find the general form of 1 { x } x n d x \displaystyle \int_1^\infty \dfrac{\{x\}}{x^n} \, \mathrm{d}x .

Clarification : { x } \{x\} denotes the fractional part function .


The answer is 367.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Mar 11, 2016

I = 1 { x } x n d x Let { x } = t and x = k + t , where k = 1 , 2 , 3... d x = d t = k = 1 0 1 t ( k + t ) n d t = k = 1 0 1 ( 1 ( k + t ) n 1 k ( k + t ) n ) d t = k = 1 [ k ( n 1 ) ( k + t ) n 1 1 ( n 2 ) ( k + t ) n 2 ] 0 1 = k = 1 [ k + ( n 1 ) t ( n 1 ) ( n 2 ) ( k + t ) n 1 ] 0 1 = 1 ( n 1 ) ( n 2 ) k = 1 ( k k n 1 k + n 1 ( k + 1 ) n 1 ) = 1 ( n 1 ) ( n 2 ) k = 1 ( k k n 1 k + 1 ( k + 1 ) n 1 n 2 ( k + 1 ) n 1 ) = 1 ( n 1 ) ( n 2 ) ( 1 k = 1 n 2 ( k + 1 ) n 1 ) = 1 ( n 1 ) ( n 2 ) ζ ( n 1 ) 1 n 1 = n 1 ( n 1 ) ( n 2 ) ζ ( n 1 ) n 1 n 4 \begin{aligned} I & = \int_1^\infty \frac{\{x\}}{x^n} dx \quad \quad \small \color{#3D99F6}{\text{Let } \{x\} = t \text{ and } x = k + t \text{, where } k =1,2,3... \space \Rightarrow dx = dt} \\ & = \sum_{k=1}^\infty \int_0^1 \frac{t}{(k+t)^n} dt \\ & = \sum_{k=1}^\infty \int_0^1 \left(\frac{1}{(k+t)^{n-1}} - \frac{k}{(k+t)^n} \right) dt \\ & = \sum_{k=1}^\infty \left[\frac{k}{(n-1)(k+t)^{n-1}} - \frac{1}{(n-2)(k+t)^{n-2}} \right]_0^1 \\ & = \sum_{k=1}^\infty \left[-\frac{k+(n-1)t}{(n-1)(n-2)(k+t)^{n-1}} \right]_0^1 \\ & = \frac{1}{(n-1)(n-2)} \sum_{k=1}^\infty \left( \frac{k}{k^{n-1}}-\frac{k+n-1}{(k+1)^{n-1}} \right) \\ & = \frac{1}{(n-1)(n-2)} \sum_{k=1}^\infty \left( \frac{k}{k^{n-1}}-\frac{k+1}{(k+1)^{n-1}} - \frac{n-2}{(k+1)^{n-1}} \right) \\ & = \frac{1}{(n-1)(n-2)} \left(1 - \sum_{k=1}^\infty \frac{n-2}{(k+1)^{n-1}} \right) \\ & = \frac{1}{(n-1)(n-2)} - \frac{\zeta(n-1) - 1}{n-1} \\ & = \boxed{\dfrac{n-1}{(n-1)(n-2)}-\dfrac{\zeta(n-1)}{n-1}} \quad n \ge 4 \end{aligned}

For n = 5 n = 5 , I = 4 ( 3 ) ( 4 ) ζ ( 4 ) 4 = 1 3 π 4 360 I = \dfrac{4}{(3)(4)}-\dfrac{\zeta(4)}{4} = \dfrac{1}{3} - \dfrac{\pi^4}{360}

A + B + C = 3 + 4 + 360 = 367 \Rightarrow A+B+C = 3+4+360 = \boxed{367}

Sir won't it be easier if we consider f r a c x = x [ x ] frac{x}= x-[x] ?

Harsh Shrivastava - 5 years, 3 months ago

Log in to reply

Can you show the solution?

Chew-Seong Cheong - 5 years, 3 months ago

Log in to reply

I have my posted my solution, which most probably is what Harsh is trying to say.

Kunal Verma - 5 years, 1 month ago

I try to do by tht method..but I don't know how to find 1/(1^4) + 1/(2^4) + 1/(3^4)+.... can anyone help..

Thushar Mn - 5 years, 3 months ago

Log in to reply

It is the Riemann zeta function ( more ) ζ ( s ) = k = 1 1 k s \displaystyle \zeta(s) = \sum_{k=1}^\infty \frac{1}{k^s} and ζ ( 4 ) = π 4 90 \zeta(4) = \dfrac{\pi^4}{90} .

Chew-Seong Cheong - 5 years, 3 months ago

Log in to reply

@Chew-Seong Cheong thank u sir.. :)

Thushar Mn - 5 years, 3 months ago

Awesome solution sir. I consider you the latex master in brilliant :)

Refaat M. Sayed - 5 years, 3 months ago
Kunal Verma
May 14, 2016

On taking fractional part of x x as x x x \ - \lfloor x \rfloor

Summation becomes:-

1 1 x 4 d x 1 x x 5 d x \displaystyle \int_{1}^{\infty} \frac{1}{x^4} \ dx \ - \int_{1}^{\infty} \frac{\lfloor x \rfloor}{x^5} \ dx

= 1 3 ( 1 2 1 x 5 d x + 2 3 2 x 5 d x + 3 4 3 x 5 d x . . . . ) = \frac{1}{3} \ - \ ( \int_{1}^{2} \frac{1}{x^5} \ dx \ + \int_{2}^{3} \frac{2}{x^5} \ dx \ + \int_{3}^{4} \frac{3}{x^5} \ dx \ ....)

= 1 3 1 4 ( 1 1 4 1 2 4 + 2 2 4 2 3 4 . . . . ) = \frac{1}{3} \ - \frac{1}{4} \ ( \frac{1}{1^4} \ - \frac{1}{2^4} \ + \frac{2}{2^4} \ - \frac{2}{3^4} \ .... )

= 1 3 1 4 ( 1 1 4 + 1 2 4 + 1 3 4 . . . . . ) = \frac{1}{3} \ - \frac{1}{4} \ ( \frac{1}{1^4} \ + \frac{1}{2^4} \ + \frac{1}{3^4} \ .....)

= 1 3 1 4 × ζ ( 4 ) = \frac{1}{3} \ - \frac{1}{4} \times \zeta(4)

= 1 3 π 4 360 = \frac{1}{3} \ - \frac{\pi^4}{360}

Hence A + B + C = 367 A \ + \ B \ + \ C \ = \boxed{367}

Generalised Form :-

1 { x } x n d x = 1 n 2 1 n 1 × ζ ( n 1 ) \displaystyle \int_1^\infty \dfrac{\{x\}}{x^n} \, \mathrm{d}x \ = \frac{1}{n-2} \ - \frac{1}{n-1} \times \zeta(n-1)

Did the same!

Prakhar Bindal - 5 years ago

Did the same way. ¨ \ddot\smile

Rachit Shukla - 5 years ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...