∫ 1 ∞ x 5 { x } d x
If the value of the integral above is equal to A 1 − C π B for positive integers A , B and C , find A + B + C .
Bonus : Find the general form of ∫ 1 ∞ x n { x } d x .
Clarification : { x } denotes the fractional part function .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Sir won't it be easier if we consider f r a c x = x − [ x ] ?
Log in to reply
Can you show the solution?
Log in to reply
I have my posted my solution, which most probably is what Harsh is trying to say.
I try to do by tht method..but I don't know how to find 1/(1^4) + 1/(2^4) + 1/(3^4)+.... can anyone help..
Log in to reply
It is the Riemann zeta function ( more ) ζ ( s ) = k = 1 ∑ ∞ k s 1 and ζ ( 4 ) = 9 0 π 4 .
Awesome solution sir. I consider you the latex master in brilliant :)
On taking fractional part of x as x − ⌊ x ⌋
Summation becomes:-
∫ 1 ∞ x 4 1 d x − ∫ 1 ∞ x 5 ⌊ x ⌋ d x
= 3 1 − ( ∫ 1 2 x 5 1 d x + ∫ 2 3 x 5 2 d x + ∫ 3 4 x 5 3 d x . . . . )
= 3 1 − 4 1 ( 1 4 1 − 2 4 1 + 2 4 2 − 3 4 2 . . . . )
= 3 1 − 4 1 ( 1 4 1 + 2 4 1 + 3 4 1 . . . . . )
= 3 1 − 4 1 × ζ ( 4 )
= 3 1 − 3 6 0 π 4
Hence A + B + C = 3 6 7
Generalised Form :-
∫ 1 ∞ x n { x } d x = n − 2 1 − n − 1 1 × ζ ( n − 1 )
Problem Loading...
Note Loading...
Set Loading...
I = ∫ 1 ∞ x n { x } d x Let { x } = t and x = k + t , where k = 1 , 2 , 3 . . . ⇒ d x = d t = k = 1 ∑ ∞ ∫ 0 1 ( k + t ) n t d t = k = 1 ∑ ∞ ∫ 0 1 ( ( k + t ) n − 1 1 − ( k + t ) n k ) d t = k = 1 ∑ ∞ [ ( n − 1 ) ( k + t ) n − 1 k − ( n − 2 ) ( k + t ) n − 2 1 ] 0 1 = k = 1 ∑ ∞ [ − ( n − 1 ) ( n − 2 ) ( k + t ) n − 1 k + ( n − 1 ) t ] 0 1 = ( n − 1 ) ( n − 2 ) 1 k = 1 ∑ ∞ ( k n − 1 k − ( k + 1 ) n − 1 k + n − 1 ) = ( n − 1 ) ( n − 2 ) 1 k = 1 ∑ ∞ ( k n − 1 k − ( k + 1 ) n − 1 k + 1 − ( k + 1 ) n − 1 n − 2 ) = ( n − 1 ) ( n − 2 ) 1 ( 1 − k = 1 ∑ ∞ ( k + 1 ) n − 1 n − 2 ) = ( n − 1 ) ( n − 2 ) 1 − n − 1 ζ ( n − 1 ) − 1 = ( n − 1 ) ( n − 2 ) n − 1 − n − 1 ζ ( n − 1 ) n ≥ 4
For n = 5 , I = ( 3 ) ( 4 ) 4 − 4 ζ ( 4 ) = 3 1 − 3 6 0 π 4
⇒ A + B + C = 3 + 4 + 3 6 0 = 3 6 7