From Europe with love

Algebra Level 4

1 a 4 + 1 + 1 b 4 + 1 + 1 c 4 + 1 + 1 d 4 + 1 = 1 \large \dfrac{1}{a^4+1}+\dfrac{1}{b^4+1}+\dfrac{1}{c^4+1}+\dfrac{1}{d^4+1}=1

Let a , b , c a,b,c and d d be positive reals satisfying the equation above, find the minimum value of 20 a b c d 20abcd .


The answer is 60.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Rishabh Jain
Feb 1, 2016

Applying AM \geq HM ( a 4 + 1 ) + ( b 4 + 1 ) + ( c 4 + 1 ) + ( d 4 + 1 ) 4 4 1 a 4 + 1 + 1 b 4 + 1 + 1 c 4 + 1 + 1 d 4 + 1 = 4 \frac{(a^4+1)+(b^4+1)+(c^4+1)+(d^4+1)}{4}\geq\frac{4}{\frac{1}{a^4+1}+\frac{1}{b^4+1}+\frac{1}{c^4+1}+\frac{1}{d^4+1}}=4 c y c a 4 12 \Rightarrow \displaystyle \sum_{cyc} a^4 \geq 12 Now applying AM \geq GM c y c a 4 12 4 ( c y c a 4 ) 1 4 \Rightarrow \displaystyle \sum_{cyc} a^4 \geq 12 \geq 4(\prod_{cyc} a^4)^{\frac{1}{4}} c y c a 3 \Rightarrow \prod_{cyc} a\leq 3 Hence 20 × 3 = 60 \Large 20\times 3=60 Equality occurs when a = b = c = d = ( 3 ) 1 4 \small{\color{#D61F06}{\text{Equality occurs when }a=b=c=d=(3)^{\frac{1}{4}}}}

Bhaiya somewhere I believe you have made an weaker inequality because

c y c a 4 ( c y c a 4 ) 1 4 \Large{\sum _{ cyc }^{ }{ { a }^{ 4 } } \ge { \left( \prod _{ cyc }^{ }{ { a }^{ 4 } } \right) }^{ \frac { 1 }{ 4 } }\\ }

And,

c y c a 4 12 \Large{\sum _{ cyc }^{ }{ { a }^{ 4 } } \ge 12}

But you cannot say anything like

12 ( c y c a 4 ) 1 4 o r ( c y c a 4 ) 1 4 12 \Large{12\ge { \left( \prod _{ cyc }^{ }{ { a }^{ 4 } } \right) }^{ \frac { 1 }{ 4 } }\\ or\\ { \left( \prod _{ cyc }^{ }{ { a }^{ 4 } } \right) }^{ \frac { 1 }{ 4 } }\ge 12}

Department 8 - 5 years, 4 months ago

Log in to reply

Since minimum value of c y c a 4 i s 12 \sum_{cyc} a^4 is 12 which c y c a 4 \prod_{cyc}^{ }a^4 cannot exceed, hence maximum value of c y c a 4 \prod_{cyc}^{} a^4 must be 3. What was the way you adopted to solve this problem??

Rishabh Jain - 5 years, 4 months ago

Log in to reply

I solved the same way, maybe @Harsh Shrivastava , can explain

Department 8 - 5 years, 4 months ago

Log in to reply

@Department 8 Simply substitute a = 1/p, b=1/q ... I will try to post a complete solution by tmmrw.

@Lakshya Sinha

Harsh Shrivastava - 5 years, 4 months ago

Log in to reply

@Harsh Shrivastava From where do you learn such gr8 things

Department 8 - 5 years, 4 months ago
P C
Feb 26, 2016

From the condition we have c y c a , b , c , d 1 a 4 1 + 1 a 4 = 1 \displaystyle\sum_{cyc}^{a,b,c,d} \frac{\frac{1}{a^4}}{1+\frac{1}{a^4}}=1 Now by Cauchy-Schwarz Inequality we have 1 = c y c a , b , c , d 1 a 4 1 + 1 a 4 ( c y c a , b , c , d 1 a 2 ) 2 4 + c y c a , b , c , d 1 a 4 1=\displaystyle\sum_{cyc}^{a,b,c,d} \frac{\frac{1}{a^4}}{1+\frac{1}{a^4}}\geq\frac{\big(\displaystyle\sum_{cyc}^{a,b,c,d} \frac{1}{a^2}\big)^2}{4+\displaystyle\sum_{cyc}^{a,b,c,d} \frac{1}{a^4}} Therefore c y c a , b , c , d 1 a 4 + 4 ( c y c a , b , c , d 1 a 2 ) 2 \displaystyle\sum_{cyc}^{a,b,c,d} \frac{1}{a^4}+4\geq(\displaystyle\sum_{cyc}^{a,b,c,d} \frac{1}{a^2})^2 c y c a , b , c , d 2 a b 4 \Leftrightarrow\displaystyle\sum_{cyc}^{a,b,c,d} \frac{2}{ab}\leq 4 By AM-GM we have L H S 12 a b c d LHS\geq\frac{12}{abcd} , so finally a b c d 3 20 a b c d 60 abcd\geq 3 \Rightarrow 20abcd\geq 60 The equality holds when a = b = c = d = 3 4 a=b=c=d=\sqrt[4]{3}

Dave Day
Feb 3, 2016

( b 4 + 1 ) ( c 4 + 1 ) ( d 4 + 1 ) = ( a 4 + 1 ) ( b 4 + 1 ) ( c 4 + 1 ) ( d 4 + 1 ) \sum(b^4+1)(c^4+1)(d^4+1)=(a^4+1)(b^4+1)(c^4+1)(d^4+1) L e f t = ( b 4 c 4 d 4 + b 4 c 4 + b 4 + 1 ) Left= \sum(b^4c^4d^4+\sum b^4c^4+\sum b^4+1) = a 4 b 4 c 4 + 2 a 4 b 4 + 3 a 4 + 4 = a 4 b 4 c 4 d 4 + a 4 b 4 c 4 + a 4 b 4 + a 4 + 1 =\sum a^4b^4c^4+2\sum a^4b^4+3\sum a^4+4=a^4b^4c^4d^4+\sum a^4b^4c^4 +\sum a^4b^4+\sum a^4 +1 a 4 b 4 c 4 d 4 = a 4 b 4 + 2 a 4 + 3 \Rightarrow a^4b^4c^4d^4=\sum a^4b^4+2\sum a^4+3 6 a 2 b 2 c 2 d 2 + 8 a b c d + 3 \geq 6a^2b^2c^2d^2+8abcd+3 In fact,we can conclude that a b c d 3 abcd\geq 3 .But I 'd like to point out why only 3: Let t = a b c d t=abcd then t 4 6 t 2 8 t 3 0 t^4-6t^2-8t-3\geq 0 Let f ( t ) = t 4 6 t 2 8 t 3 f(t)=t^4-6t^2-8t-3 f ( 3 ) = 0 , f ( 2 ) < 0 , f ( 0 ) < 0 f(3)=0,f(2)<0,f(0)<0

f ( t ) = 4 t 3 12 t 8 = 4 ( t 3 3 t 2 ) f^{'} (t)=4t^3-12t-8=4(t^3-3t-2) Find that f ( 2 ) = 0 , f ( 1 ) < 0 , f ( 0 ) < 0 f^{'}(2)=0,f^{'}(1)<0,f^{'}(0)<0 and f ( t ) = 12 ( t 2 1 ) f^{''}(t)=12(t^2-1) hence t = 3 t=3 is the only positive solution to f ( t ) = 0 f(t)=0

Opps...latex is exhausting.

Dave Day - 5 years, 4 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...