About n n

Algebra Level 2

n + ( n 1 ) + + 2 + 1 + 2 + + ( n 1 ) + n \large n + (n-1) +\cdots + 2 + 1 +2 + \cdots + (n-1) + n

If the value of the expression above is 461, find the value of n 1 n-1 .


The answer is 20.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Raihan Fauzan
May 5, 2016

n + ( n 1 ) + . . . + 2 + 1 + 2 + . . . + ( n 1 ) + n = 461 n + (n-1) + ... + 2 + 1 + 2 + ... + (n-1) + n = 461

n + ( n 1 ) + . . . + 2 + 2 + . . . + ( n 1 ) + n = 460 n + (n-1) + ... + 2 + 2 + ... + (n-1) + n = 460

2 ( n + ( n 1 ) + . . . + 2 ) = 460 2(n + (n-1) + ... + 2) = 460

n + ( n 1 ) + . . . + 2 = 230 n + (n-1) + ... +2 = 230

n ( n + 1 ) 2 1 = 230 \frac{n(n+1)}{2} - 1 = 230

n ( n + 1 ) 2 = 231 \frac{n(n+1)}{2} = 231

n 2 + n = 462 n^2 + n = 462

n 2 + n 462 = 0 n^2 + n - 462 = 0

( n + 22 ) ( n 21 ) = 0 (n + 22)(n - 21) = 0

n = 21 n = 21

So, n 1 = 20 n - 1 = \boxed{20}

But n n can be 22 -22 also. You should clarify that n n is a positive integer.

Yash Jain - 5 years, 1 month ago

Log in to reply

Just think about it. It comes from 1, then 2, and continues. So, n n must be positive

Raihan Fauzan - 5 years, 1 month ago

n n generally represents a natural number.

Arkajyoti Banerjee - 5 years, 1 month ago

Log in to reply

Oh okay, I was unaware about it. Thanks.

Yash Jain - 5 years, 1 month ago

Log in to reply

@Yash Jain Its okay. :)

Maybe you'll see somewhere, that i i represents an irrational number and not 1 \sqrt{-1} XD

Arkajyoti Banerjee - 5 years, 1 month ago
Hung Woei Neoh
May 7, 2016

n + ( n 1 ) + + 2 + 1 + 2 + + ( n 1 ) + n = 461 1 + 2 + + ( n 1 ) + n + 2 + + ( n 1 ) + n = 461 1 + 2 + + ( n 1 ) + n + 1 + 2 + + ( n 1 ) + n = 461 + 1 2 i = 1 n i = 462 2 ( n ) ( n + 1 ) 2 = 462 n 2 + n 462 = 0 ( n + 22 ) ( n 21 ) = 0 n = 21 , 22 n+(n-1)+\ldots + 2 + 1 + 2 + \ldots + (n-1) + n = 461\\ 1+2 + \ldots + (n-1) + n + 2 + \ldots + (n-1) + n = 461\\ 1 + 2 + \ldots + (n-1) + n + 1 + 2 + \ldots + (n-1) + n = 461 + 1\\ \displaystyle 2 \sum_{i=1}^n i = 462\\ 2\dfrac{(n)(n+1)}{2} = 462\\ n^2 + n - 462 = 0\\ (n+22)(n-21)=0\\ n=21,-22

From the expression, we know that the sequence is 1 + 2 + + n 1+ 2 + \ldots + n , so we know that n > 0 n>0

Therefore, n = 21 n=21 and

n 1 = 21 1 = 20 n-1 = 21 - 1 = \boxed{20}

Great one! Thanks

Raihan Fauzan - 5 years, 1 month ago
Goh Choon Aik
May 7, 2016

Take the square root of 461, floor it, and subtract one.

EDIT: I have found out why it works.

Take a square. Let the sides be of length x.

A r e a = x 2 Area = x^2

We can find the area also as a summation:

1 + 3 + 5 + 7 + . . . + x = ( x 2 + 1 ) 2 1 + 3 + 5 + 7 + ... + x = (\lfloor\frac{x}{2}\rfloor + 1)^2

which we can split into:

1 + ( 1 + 2 ) + ( 2 + 3 ) + ( 3 + 4 ) + . . . + x 2 + ( x 2 + 1 ) = ( x 2 + 1 ) 2 1 + (1 + 2) + (2 + 3) + (3 + 4) + ... + \lfloor\frac{x}{2}\rfloor + (\lfloor\frac{x}{2}\rfloor +1) = (\lfloor\frac{x}{2}\rfloor + 1)^2

Manipulating the equation,

( x 2 + 1 ) + x 2 + + 2 + 1 + 2 + + x 2 + 1 = ( x 2 + 1 ) 2 (\lfloor\frac{x}{2}\rfloor +1) + \lfloor\frac{x}{2}\rfloor + \ldots + 2 + 1 + 2 + \ldots + \lfloor\frac{x}{2}\rfloor + 1 = (\lfloor\frac{x}{2}\rfloor + 1)^2

( x 2 + 1 ) + x 2 + + 2 + 1 + 2 + + x 2 = ( x 2 + 1 ) 2 1 (\lfloor\frac{x}{2}\rfloor +1) + \lfloor\frac{x}{2}\rfloor + \ldots + 2 + 1 + 2 + \ldots + \lfloor\frac{x}{2}\rfloor = (\lfloor\frac{x}{2}\rfloor + 1)^2 - 1

Letting x 2 = m \lfloor\frac{x}{2}\rfloor = m , m + 1 = n m + 1 = n :

( m + 1 ) + m + + 2 + 1 + 2 + + m + ( m + 1 ) = ( m + 1 ) 2 + ( m + 1 ) 1 (m + 1) + m + \ldots + 2 + 1 + 2 + \ldots + m + (m + 1) = (m + 1)^2 + (m + 1) -1

461 = ( m + 1 ) 2 + m 461 = (m + 1)^2 + m

Now we see that if we square root this equation, we get an ugly mess of irrationality behind (m + 1) due to there being an extra '+ m' behind the equation. There we floor the answer to get rid of it.

Now we got m + 1 = 21 m + 1 = 21 , or n = 21 n = 21 .

Therefore n 1 = 20 \boxed{n - 1 = 20} .

Cool! But I think you should know why

Raihan Fauzan - 5 years, 1 month ago

Log in to reply

i have edited the thing that i did not know by learning! also indeed it is cool

Goh Choon Aik - 5 years, 1 month ago

T h e e q u a t i o n c a n b e w r i t t e n a s , 1 + 2 × ( 2 + 3 + 4 + 5 + . . . . . + n ) = 461 2 × ( 2 + 3 + 4 + 5 + . . . . + n ) = 460 2 × ( 1 + 2 + 3 + 4 + 5 + . . . . + n 1 ) = 460 2 × ( n ( n + 1 ) 2 1 ) = 460 2 × ( n ( n + 1 ) 2 2 ) = 460 n ( n + 1 ) 2 = 460 n ( n + 1 ) = 462 n ( n + 1 ) = 21 × 22 O n c o m p a r i n g , n = 21 n 1 = 21 1 = 20 The\quad equation\quad can\quad be\quad written\quad as,\quad \\ 1+2\quad \times (2+3+4+5+.....+n)\quad =\quad 461\\ 2\times (2+3+4+5+....+n)\quad =\quad 460\\ 2\times (1+2+3+4+5+....+n-1)\quad =\quad 460\\ 2\quad \times \quad (\frac { n(n+1) }{ 2 } -1)=460\\ 2\quad \times \quad (\frac { n(n+1)-2 }{ 2 } )=460\\ n(n+1)-2=460\\ n(n+1)\quad =\quad 462\\ n(n+1)\quad =\quad 21\quad \times \quad 22\\ On\quad comparing,\\ n=21\\ \\ n-1=21-1=20

Your way is almost the same as me. But thank you for giving this solution!

Raihan Fauzan - 5 years, 1 month ago

Log in to reply

hehe....that's amazing. =)

Yashwanth Manivannan - 5 years, 1 month ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...