From sum to sum

Algebra Level 3

If

1 + 3 x + 5 x 2 + 7 x 3 + 9 x 4 + = 91 , \large 1 + \frac{3}{x} + \frac{5}{x^2} + \frac{7}{x^3} + \frac{9}{x^4} +\ldots = 91,

then evaluate

1 + 4 x + 9 x 2 + 16 x 3 + 25 x 4 + \large 1 + \frac{4}{x} + \frac{9}{x^2} + \frac{16}{x^3} + \frac{25}{x^4} +\ldots


The answer is 637.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

8 solutions

Let the first infinite sum be S 1 S_1 , therefore,

S 1 = 1 + 3 x + 5 x 2 + 7 x 3 + 9 x 4 + . . . = n = 0 ( 1 + 2 n ) ( 1 x ) n \begin{aligned} S_1 & = 1 + \frac{3}{x} + \frac{5}{x^2} + \frac{7}{x^3} + \frac{9}{x^4} + ... \\ & = \sum_{n=0}^\infty (1+2n)\left(\frac{1}{x}\right)^n \end{aligned}

We note that S 1 S_1 is an AGP (arithmetic-geometric progression) with first term a = 1 a=1 , common difference d = 2 d=2 and common ratio r = 1 x r= \dfrac{1}{x} and its sum is S = a 1 r + d r ( 1 r ) 2 S_\infty = \dfrac{a}{1-r} + \dfrac{dr}{(1-r)^2} (see wiki ). Therefore, we have:

1 1 1 x + 2 ( 1 x ) ( 1 1 x ) = 91 x x 1 + 2 x ( x 1 ) 2 = 91 x ( x 1 ) + 2 x x 2 2 x + 1 = 91 90 x 2 183 x + 91 = 0 ( 15 x 13 ) ( 6 x 7 ) = 0 x = { 13 15 < 1 rejected; for S 1 to converge x > 1. 7 6 > 1 accepted. \begin{aligned} \frac{1}{1-\frac{1}{x}} +\frac{2\left(\frac{1}{x}\right)}{\left(1-\frac{1}{x}\right)} & = 91 \\ \frac{x}{x-1} + \frac{2x}{(x-1)^2} & = 91 \\ \frac{x(x-1)+2x}{x^2-2x+1} & = 91 \\ 90x^2 - 183x + 91 & = 0 \\ (15x-13)(6x-7) & = 0 \\ \Rightarrow x & = \begin{cases} \frac{13}{15} & \color{#D61F06}{< 1 \quad \text{rejected; for }S_1 \text{ to converge } x>1.} \\ \frac{7}{6} & \color{#3D99F6}{> 1 \quad \text{accepted.}} \end{cases} \end{aligned}

Let the second infinite sum be S 2 S_2 , then we have:

S 2 = 1 + 4 x + 9 x 2 + 16 x 3 + 25 x 4 + . . . = 1 + 3 x + 1 x + 5 x 2 + 4 x 2 + 7 x 3 + 9 x 3 + 9 x 4 + 16 x 4 + . . . = 1 + 3 x + 5 x 2 + 7 x 3 + 9 x 4 + . . . 1 x + 4 x 2 + 9 x 3 + 16 x 4 + . . . = 1 + 3 x + 5 x 2 + 7 x 3 + 9 x 4 + . . . + 1 x ( 1 + 4 x + 9 x 2 + 16 x 3 + . . . ) = S 1 + 1 x S 2 S 2 = S 1 + 6 7 S 2 S 2 = 7 S 1 = 637 \begin{aligned} S_2 & = 1 + \color{#3D99F6}{\frac{4}{x}} + \color{#D61F06}{\frac{9}{x^2}} + \color{#20A900}{\frac{16}{x^3}} + \color{magenta}{\frac{25}{x^4}} + ... \\ & =1 + \color{#3D99F6}{\frac{3}{x}+\frac{1}{x}} + \color{#D61F06}{\frac{5}{x^2}+\frac{4}{x^2}} + \color{#20A900}{\frac{7}{x^3}+\frac{9}{x^3}} + \color{magenta}{\frac{9}{x^4}+\frac{16}{x^4}} + ... \\ & = 1 + \color{#3D99F6}{\frac{3}{x}} + \color{#D61F06}{\frac{5}{x^2}} + \color{#20A900}{\frac{7}{x^3}} + \color{magenta}{\frac{9}{x^4}} + ...\color{#3D99F6}{\frac{1}{x}} + \color{#D61F06}{\frac{4}{x^2}} + \color{#20A900}{\frac{9}{x^3}} + \color{magenta}{\frac{16}{x^4}} + ... \\ & = 1 + \color{#3D99F6}{\frac{3}{x}} + \color{#D61F06}{\frac{5}{x^2}} + \color{#20A900}{\frac{7}{x^3}} + \color{magenta}{\frac{9}{x^4}} + ... + \frac{1}{x} \left(\color{#3D99F6}{1} + \color{#D61F06}{\frac{4}{x}} + \color{#20A900}{\frac{9}{x^2}} + \color{magenta}{\frac{16}{x^3}} + ... \right) \\ & = S_1 + \frac{1}{x}S_2 \\ \Rightarrow S_2 & = S_1 + \frac{6}{7}S_2 \\ S_2 & = 7S_1 = \boxed{637} \end{aligned}

I was not able to get factors of that quadratic eq. Is their any easy way to find the factors.

Praful Jain - 5 years, 7 months ago

Log in to reply

There is a sure way of perfect square method for quadratic roots. For a x 2 + b x + c = 0 ax^2+bx+c=0 , then we have x = b ± b 2 4 a c 2 a x=\dfrac{-b\pm\sqrt{b^2-4ac}}{2a} . For rational roots b 2 4 a c b^2-4ac is perfect square of a rational number. Using this example: x = 183 ± 18 3 2 4 ( 90 ( 91 ) 2 ( 90 ) = 183 ± 729 180 = 183 ± 27 180 = { 210 180 = 7 6 156 180 = 13 15 x = \dfrac{183\pm\sqrt{183^2-4(90(91)}}{2(90)} = \dfrac{183\pm\sqrt{729}}{180} = \dfrac{183\pm 27}{180} = \begin{cases} \frac{210}{180} = \frac{7}{6} \\ \frac{156}{180} = \frac{13}{15} \end{cases}

( 6 x 7 ) ( 15 x 13 ) = 0 \Rightarrow (6x-7)(15x-13) = 0

Chew-Seong Cheong - 5 years, 7 months ago

It is not easy to factor; however, if you suspect that the solutions are rational, consider that 91 = 1 91 = 7 13 91 = 1\cdot 91\ = 7\cdot 13 are the only possible factorizations of the constant term. Thus we write ( a x 7 ) ( b x 13 ) = a b x 2 ( 13 a + 7 b ) x + 91. (ax - 7)(bx - 13) = abx^2 - (13a+7b)x + 91. Next, consider that 13 a + 7 b = 183 13a + 7b = 183 implies that a 14 a \leq 14 and b 26 b \leq 26 . This limit the factorizations for a b = 90 a\cdot b = 90 to 90 = 5 18 , 6 15 , 9 10 , 10 9. 90 = 5\cdot 18, 6\cdot 15, 9\cdot 10, 10\cdot 9. We readily see that the second option is correct, so ( 6 x 7 ) ( 15 x 13 ) = 90 x 2 183 x + 91. (6x - 7)(15x - 13) = 90x^2 - 183x + 91.

Arjen Vreugdenhil - 5 years, 7 months ago

Log in to reply

I didn't understand how it limits the factorizations for a.b=90

Praful Jain - 5 years, 7 months ago

Log in to reply

@Praful Jain Because a and b are both positive, and 13a + 7b < 183, we can rule out situations such as a = 45, b = 2.

Arjen Vreugdenhil - 5 years, 7 months ago

A small error: the two terms in the arithmetic geometric progression formula need to be added not subtracted.

Jonathan Hocker - 5 years, 7 months ago

Log in to reply

Thanks, I have amended it.

Chew-Seong Cheong - 5 years, 7 months ago

Log in to reply

Haha thank you for posting the solution and linking the wiki so I could learn about this series.

Jonathan Hocker - 5 years, 7 months ago

Did the same way!

Thomas Jacob - 4 years, 6 months ago
Ikkyu San
Nov 2, 2015

Let

S = 1 + 4 x + 9 x 2 + 16 x 3 + 25 x 4 + ( 1 ) \begin{aligned}S=&\ 1+\dfrac4x+\dfrac9{x^2}+\dfrac{16}{x^3}+\dfrac{25}{x^4}+\cdots\Rightarrow(1)\end{aligned}

Multiplying with 1 x \dfrac1x in equation ( 1 ) (1)

1 x S = 1 x + 4 x 2 + 9 x 3 + 16 x 4 + 25 x 5 + ( 2 ) \begin{aligned}\dfrac1xS=&\ \dfrac1x+\dfrac4{x^2}+\dfrac9{x^3}+\dfrac{16}{x^4}+\dfrac{25}{x^5}+\cdots\Rightarrow(2)\end{aligned}

Subtracting equation ( 1 ) (1) with equation ( 2 ) (2)

( 1 1 x ) S = 1 + 4 1 x + 9 4 x 2 + 16 9 x 3 + 25 16 x 4 + ( x 1 x ) S = 1 + 3 x + 5 x 2 + 7 x 3 + 9 x 4 + ( x 1 x ) S = 91 S = 91 x x 1 ( 3 ) \begin{aligned}\left(1-\dfrac1x\right)S=&\ 1+\dfrac{4-1}x+\dfrac{9-4}{x^2}+\dfrac{16-9}{x^3}+\dfrac{25-16}{x^4}+\cdots\\\left(\dfrac{x-1}x\right)S=&\ 1+\dfrac3x+\dfrac5{x^2}+\dfrac7{x^3}+\dfrac9{x^4}+\cdots\\\left(\dfrac{x-1}x\right)S=&\ 91\\S=&\ \dfrac{91x}{x-1}\Rightarrow(3)\end{aligned}

From Equation,

1 + 3 x + 5 x 2 + 7 x 3 + 9 x 4 + = 91 ( 4 ) \begin{aligned}1+\dfrac3x+\dfrac5{x^2}+\dfrac7{x^3}+\dfrac9{x^4}+\cdots=&\ 91\Rightarrow(4)\end{aligned}

Multiplying with 1 x \dfrac1x in equation ( 4 ) (4)

1 x + 3 x 2 + 5 x 3 + 7 x 4 + 9 x 5 + = 91 x ( 5 ) \begin{aligned}\dfrac1x+\dfrac3{x^2}+\dfrac5{x^3}+\dfrac7{x^4}+\dfrac9{x^5}+\cdots=&\ \dfrac{91}x\Rightarrow(5)\end{aligned}

Subtracting equation ( 4 ) (4) with equation ( 5 ) (5)

1 + 3 1 x + 5 3 x 2 + 7 5 x 3 + 9 7 x 4 + = 91 91 x 2 x + 2 x 2 + 2 x 3 + 2 x 4 + = 90 91 x 2 x 2 + 2 x 3 + 2 x 4 + = 90 93 x 2 x 2 1 1 x = 90 x 93 x , 1 x < 1 2 x 2 = ( 90 x 93 x ) ( x 1 x ) 2 x 2 = 90 x 2 183 x + 93 x 2 2 = 90 x 2 183 x + 93 , x 0 90 x 2 183 x + 91 = 0 ( 15 x 13 ) ( 6 x 7 ) = 0 x = 13 15 , 7 6 \begin{aligned}1+\dfrac{3-1}x+\dfrac{5-3}{x^2}+\dfrac{7-5}{x^3}+\dfrac{9-7}{x^4}+\cdots=&\ 91-\dfrac{91}x\\\dfrac2x+\dfrac2{x^2}+\dfrac2{x^3}+\dfrac2{x^4}+\cdots=&\ 90-\dfrac{91}x\\\dfrac2{x^2}+\dfrac2{x^3}+\dfrac2{x^4}+\cdots=&\ 90-\dfrac{93}x\\\dfrac{\dfrac2{x^2}}{1-\dfrac1x}=&\ \dfrac{90x-93}x,\ \left|\dfrac1x\right|<1\\\dfrac2{x^2}=&\ \left(\dfrac{90x-93}x\right)\left(\dfrac{x-1}x\right)\\\dfrac2{x^2}=&\ \dfrac{90x^2-183x+93}{x^2}\\2=&\ 90x^2-183x+93,\ x\neq0\\90x^2-183x+91=&\ 0\\(15x-13)(6x-7)=&\ 0\\x=&\ \dfrac{13}{15},\ \dfrac76\end{aligned}

But 1 x < 1 \left|\dfrac1x\right|<1 Thus, x = 7 6 x=\dfrac76

Instead x x with 7 6 \dfrac76 in equation ( 3 ) (3) that is,

S = 91 ( 7 6 ) 7 6 1 = 637 6 1 6 = 637 \begin{aligned}S=\dfrac{91\left(\dfrac76\right)}{\dfrac76-1}=\dfrac{\dfrac{637}6}{\dfrac16}=\boxed{637}\end{aligned}

Ditto same solution. Not even a step different.

Kushagra Sahni - 5 years, 7 months ago

Log in to reply

Same here...i also solve it by same sequnce if steps..

rishabh singhal - 5 years, 7 months ago

I used calculus!

First, let z = 1 x z = \dfrac{1}{\sqrt{x}} . Then 1 + 3 x + 5 x 2 + = 1 + 3 z 2 + 5 z 4 + = d d z ( z + z 3 + z 5 + ) = d d z ( z ( 1 + z 2 + z 4 + ) ) = d d z z 1 z 2 = 1 + z 2 ( 1 z 2 ) 2 = x 2 + x ( x 1 ) 2 . 1 + \frac3 x + \frac 5{x^2} + \cdots = 1 + 3z^2 + 5z^4 + \cdots \\ = \frac{d}{dz}(z+z^3+z^5+\cdots) = \frac{d}{dz}(z\cdot(1+z^2+z^4+\cdots)) \\ = \frac{d}{dz}\frac{z}{1-z^2} = \frac{1+z^2}{(1-z^2)^2} \\ = \frac{x^2+x}{(x-1)^2}. This is equal to 91. Solving for x x , x 2 + x = 91 ( x 1 ) 2 x = 7 6 x = 13 15 , x^2 + x = 91(x-1)^2\ \ \ \therefore\ \ \ x = \tfrac76\ \vee\ x = \tfrac{13}{15}, but the latter solution we reject because that would cause a divergent series.

Now let u = 1 / x u = 1/x . Then 1 + 4 x + 9 x 2 + = 1 + 4 u + 9 u 2 + = d d u ( u + 2 u 2 + 3 u 3 + ) = d d u ( u ( 1 + 2 u + 3 u 2 + ) ) = d d u ( u d d u ( u + u 2 + u 3 + ) ) = d d u ( u d d u u 1 u ) = d d u ( u 1 ( 1 u ) 2 ) = d d u u ( 1 u ) 2 = 1 + u ( 1 u ) 3 = x 3 + x 2 ( x 1 ) 3 = x x 1 x 2 + x ( x 1 ) 2 = 7 / 6 7 / 6 1 91 = 7 7 6 91 = 637 . 1 + \tfrac 4 x + \frac 9{x^2} + \cdots = 1 + 4u + 9u^2 + \cdots \\ = \frac{d}{du}(u + 2u^2 + 3u^3 + \cdots) = \frac{d}{du}(u\cdot(1 + 2u + 3u^2 + \cdots)) \\ = \frac{d}{du}\left(u\frac{d}{du}(u + u^2 + u^3 + \cdots)\right) = \frac{d}{du}\left(u\frac{d}{du}\frac{u}{1-u}\right) \\ = \frac{d}{du}\left(u\frac{1}{(1-u)^2}\right) = \frac{d}{du}\frac{u}{(1-u)^2} \\ = \frac{1+u}{(1-u)^3} = \frac{x^3+x^2}{(x-1)^3} \\ = \frac{x}{x-1}\cdot \frac{x^2+x}{(x-1)^2} = \frac{7/6}{7/6-1}\cdot 91 \\ = \frac{7}{7-6}\cdot 91 = \boxed{637}.

Beautiful. I'm partial to calculus, so this solution makes me happy.

Andrew Ellinor - 5 years, 7 months ago

Could you please explain the 3rd step where you transform d/dz(z(1+z^2+z^4+...)) into the closed-form expression d/dz(z/(1-z^2) ? Thanks!

Pablo Padilla - 5 years, 7 months ago

Log in to reply

Sure. In general, 1 + α + α 2 + = 1 1 α . 1 + \alpha + \alpha^2 + \cdots = \frac1{1-\alpha}. Substitute α = z 2 \alpha = z^2 .

Arjen Vreugdenhil - 5 years, 6 months ago

A lovely solution indeed

Shashwat Avasthi - 5 years, 6 months ago
展豪 張
Nov 5, 2015

Observing that
1 = 1 1=1
4 = 1 + 3 4=1+3
9 = 1 + 3 + 5 9=1+3+5
...
I expressed 1 + 4 x + 9 x 2 + . . . \displaystyle1+\frac 4x+\frac 9{x^2}+...
= ( 1 + 3 x + 5 x 2 + . . . ) ( 1 + 1 x + 1 x 2 + . . . ) \displaystyle=(1+\frac 3x+\frac 5{x^2}+...)(1+\frac 1x+\frac 1{x^2}+...)
= ( 91 ) ( 1 1 1 x ) \displaystyle=(91)(\frac 1{1-\frac 1x})
= 91 x x 1 \displaystyle=\frac {91x}{x-1}
My approach to find x x is the same as Ikkyu San's one.





Ben Handley
Nov 6, 2015

Define f ( y ) = i = 0 y i = 1 / ( 1 x ) f(y)=\sum_{i=0}^{\infty} y^i = 1/(1-x) Then, by differentiating the two equivalent expressions, we get f ( y ) = i = 0 ( i + 1 ) y i = f ( y ) 2 f'(y) = \sum_{i=0}^\infty (i+1)y^i = f(y)^2 f ( y ) = i = 0 ( i + 1 ) ( i + 2 ) y i = 2 f ( y ) 3 f''(y) = \sum_{i=0}^\infty (i+1)(i+2)y^i = 2 f(y)^3

Let z = f ( 1 / x ) z=f(1/x) , then we know that 2 z 2 z 91 = 0 2z^2-z-91=0 z = 7 o r 6.5 z=7 or -6.5 z z is clearly positive, so we accept the value z = 7 z=7 . We want to calculate

i = 0 ( i + 1 ) 2 x i = 2 z 3 z 2 = z ( 2 z 2 z ) = 91 z = 637 \sum _{ i=0 }^{ \infty }{ (i+1)^{ 2 } } { x }^{ -i }\quad =\quad 2{ z }^{ 3 }-{ z }^{ 2 }\\ \qquad \qquad \qquad =\quad z(2{ z }^{ 2 }-z)\\ \qquad \qquad \qquad =\quad 91z\\ \qquad \qquad \qquad =\quad 637\\ \\

Sorry for the formatting, I can't figure out how to get a LaTeX \align to work.

Lu Chee Ket
Nov 2, 2015

x = 7/ 6

Sum wanted = 637

Its not a solution !!

Akshat Sharda - 5 years, 7 months ago

Log in to reply

Exactly it's just the answer

Kushagra Sahni - 5 years, 7 months ago

Log in to reply

You may gain a short cut by thinking from reading an answer like this as a solution particularly to this question.

Lu Chee Ket - 5 years, 7 months ago

You know the solution. To me, yes. Just a clue is more than adequate. A sort of solution able to let people to think by themselves.

Lu Chee Ket - 5 years, 7 months ago
K T
Feb 15, 2019

1 + 3 x + 5 x 2 + . . . = 91 1+\frac{3}{x}+ \frac{5}{x^2}+...=91 \quad Subtract 1 and multiply by x x on both sides

3 + 5 x + 7 x 2 + . . . = 90 x 3+ \frac{5}{x}+ \frac{7}{x^2}+...=90x \quad Subtract the first line from the second

2 ( 1 + 1 x + 1 x 2 + . . . ) = 90 x 91 2(1+ \frac{1}{x}+ \frac{1}{x^2}+...)=90x-91 \quad This converges as x > 1 |x|>1 . Assume that is the case and multiply by x 1 x-1

2 x = ( 90 x 91 ) ( x 1 ) 2x =(90x-91)(x-1)

0 = 90 x 2 183 x + 91 0=90x^2-183x+91

x = ( 183 ± 27 ) / 180 x=(183\pm27)/180

x = 7 6 x = 13 15 x=\frac{7}{6} \vee x=\frac{13}{15} \quad The latter value for x is not a valid solution, because we assumed x > 1 |x|>1 .

Let's dub the expression to evaluate t t :

t = 1 + 4 x + 16 x 2 + . . . t=1+ \frac{4}{x}+ \frac{16}{x^2}+...

t x = 1 x + 4 x 2 + 16 x 3 + . . . \frac{t}{x}=\frac{1}{x}+ \frac{4}{x^2}+ \frac{16}{x^3}+... Subtract from the line above

t ( 1 1 x ) = 1 + 3 x + 5 x 2 + . . . = 91 t(1- \frac{1}{x})=1+ \frac{3}{x}+ \frac{5}{x^2}+...=91

t = 91 1 6 7 = 91 × 7 = 637 t=\frac{91}{1- \frac{6}{7}}=91×7=\boxed{637}

We set y = 1 x y=\dfrac1x . So 1 + 3 y + 5 y 2 + 7 y 3 + 9 y 4 + = 91 n = 1 ( 2 n 1 ) y n 1 = 91. 1+3y+5y^2+7y^3+9y^4+\cdots=91\quad\Leftrightarrow\quad\sum_{n=1}^\infty(2n-1)y^{n-1} =91. Using derivative, we obtain n = 1 ( 2 n 1 ) y n 1 = 2 n = 1 n y n 1 n = 1 y n 1 = 2 n = 1 ( y n ) n = 1 y n 1 = 2 ( n = 1 y n ) 1 1 y = 2 ( 1 y ) 2 1 1 y , \sum_{n=1}^\infty(2n-1)y^{n-1} =2\sum_{n=1}^\infty n y^{n-1}-\sum_{n=1}^\infty y^{n-1}=2\sum_{n=1}^\infty(y^n)' -\sum_{n=1}^\infty y^{n-1}=2\Big(\sum_{n=1}^\infty y^n\Big)'-\frac1{1-y}=\frac2{(1-y)^2}-\frac1{1-y}, i.e. 1 + y ( 1 y ) 2 = 91 y = 6 7 y = 15 13 . \frac{1+y}{(1-y)^2}=91\quad\Rightarrow\quad y=\frac67\,\vee\,\, y=\frac{15}{13}. However, we reject 15 13 \dfrac{15}{13} , because there must be y < 1 |y|<1 for the series to converge. Further we have 1 + 4 y + 9 y 2 + 16 y 3 + 25 y 4 + = 1 + ( 1 + 3 ) y + ( 4 + 5 ) y 2 + ( 7 + 9 ) y 3 + ( 9 + 16 ) y 4 + ( 11 + 25 ) y 5 + . 1+4y+9y^2+16y^3+25y^4+\cdots=1+(1+3)y+(4+5)y^2+(7+9)y^3+(9+16)y^4+(11+25)y^5+\cdots. There follows a = 1 + 4 y + 9 y 2 + 16 y 3 + 25 y 4 + = ( 1 + 3 y + 5 y 2 + 7 y 3 + 9 y 4 + 11 y 5 ) + ( y + 4 y 2 + 9 y 3 + 16 y 4 + 25 y 5 + ) a=1+4y+9y^2+16y^3+25y^4+\cdots=(1+3y+5y^2+7y^3+9y^4+11y^5\cdots)+(y+4y^2+9y^3+16y^4+25y^5+\cdots) In view of the previous result, and replacing y = 6 7 y=\dfrac67 , we find a = 91 + y a a = 91 1 y a = 637. a=91+y\cdot a\,\,\,\Leftrightarrow\,\,\,a=\frac{91}{1-y}\,\,\,\Rightarrow\,\,\,a=637.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...