Fun with Trigonometry!!

Geometry Level 3

If the value of

( 1 + c o s π 8 ) ( 1 + c o s 3 π 8 ) ( 1 + c o s 5 π 8 ) ( 1 + c o s 7 π 8 ) \left( 1\quad +\quad cos\frac { \pi }{ 8 } \right) \left( 1\quad +\quad cos\frac { 3\pi }{ 8 } \right) \left( 1\quad +\quad cos\frac { 5\pi }{ 8 } \right) \left( 1\quad +\quad cos\frac { 7\pi }{ 8 } \right)

can be written as x y \frac { x }{ y } , then find out the value of x + y.


The answer is 9.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Kartik Sharma
Jul 27, 2014

( 1 + c o s 5 π 8 ) = c o s ( π 3 π 8 ) = c o s 3 π 8 \left( 1\quad +\quad cos\frac { 5\pi }{ 8 } \right) = cos\left( \pi \quad -\quad \frac { 3\pi }{ 8 } \right) = -cos\frac { 3\pi }{ 8 }

Similarly,

( 1 + c o s 7 π 8 ) = c o s π 8 \left( 1\quad +\quad cos\frac { 7\pi }{ 8 } \right) = -cos\frac { \pi }{ 8 }

Therefore,

( 1 + c o s π 8 ) ( 1 + c o s 3 π 8 ) ( 1 c o s 3 π 8 ) ( 1 c o s π 8 ) \left( 1\quad +\quad cos\frac { \pi }{ 8 } \right) \left( 1\quad +\quad cos\frac { 3\pi }{ 8 } \right) \left( 1\quad -\quad cos\frac { 3\pi }{ 8 } \right) \left( 1\quad -\quad cos\frac { \pi }{ 8 } \right)

= ( 1 c o s 2 3 π 8 ) ( 1 c o s 2 π 8 ) \left( 1\quad -\quad { cos }^{ 2 }\frac { 3\pi }{ 8 } \right) \left( 1\quad -\quad { cos }^{ 2 }\frac { \pi }{ 8 } \right)

Now, we know that cos²(x) = (1 + cos(2x))/2

cos²(π/8) = (1 + cos(π/4))/2 = (1 + √2/2)/2 = 1/2 + √2/4 = (2 + √2)/4

cos²(3π/8) = - (2 + √2)/4

= ( 1 2 + 2 4 ) ( 1 + 2 + 2 4 ) \left( 1\quad -\quad \frac { 2\quad +\quad \sqrt { 2 } }{ 4 } \right) \left( 1\quad +\quad \frac { 2\quad +\quad \sqrt { 2 } }{ 4 } \right)

= 4 2 16 = 1 / 8 \frac { 4\quad -\quad 2 }{ 16 } = 1/8

Hence, x + y = 9

You posted this from BMA...? And..have you done it fully?

Krishna Ar - 6 years, 10 months ago

Log in to reply

Yup!! No, I have not!! Have you?

Kartik Sharma - 6 years, 10 months ago

Log in to reply

No...I actually don't have this book...saw it in the library..and bam!!!...remembered this quesiton suddenly :P

Krishna Ar - 6 years, 10 months ago

Log in to reply

@Krishna Ar WHat? You have this book in your school library??? I hope i also have one in mine. BTW, why you just stopped posting problems(i mean your daily challenges)?

Kartik Sharma - 6 years, 10 months ago

Log in to reply

@Kartik Sharma Uhmm,,,,who said so?? I still continue to post problems. I have posted one y'day and will post one today too ^_^

Krishna Ar - 6 years, 10 months ago

Log in to reply

@Krishna Ar Oh, sorry for the comment, then. I didn't see it. Are you free? You must have guessed why I asked it....

Kartik Sharma - 6 years, 10 months ago

cos²(3π/8) is not equal to - (2 + √2)/4,
cos²(3π/8) = (1 + cos(3π/4))/2 = (1 - √2/2)/2 = 1/2 - √2/4 = (2 - √2)/4, which is not equal to - (2 + √2)/4 or (- 2 - √2) / 4

Reinaldo Limantara - 6 years, 10 months ago
Ankush Gogoi
Aug 16, 2014

We know cos 2x =2(cos^2 x) -1.so 1+ cos 2x =2 cos^2 x...using this we write (1+cos pie/8 )= 2 cos^2 pie/16 , (1+cos 3pie/8 )= 2 cos^2 3pie/16 , (1+cos 5pie/8 )= 2 cos^2 5pie/16 , (1+ cos 7pie/8 )= 2 cos^2 7pie/16 ...now sin (pie/2 - 7pie/16 ) =cos 7pie/16 ...so sin pie/16 = cos 7pie/16...sin (pie/2 - 5pie/16 ) = cos 5pie/16 ....so sin 3pie/16 = cos 5pie/16...

now answer=2 cos^2 pie/16 * 2 cos^2 3pie/16 * 2 cos^2 5pie/16 * 2 cos^2 7pie/16... =2 cos^2 pie/16 2 cos^2 3pie/16 * 2 sin^2 3 pie/16 * 2 sin^2 pie/16... =(4 cos^2 pie/16 * sin^2 pie/16) * (4 cos^2 3pie/16 * sin ^2 3pie/16)... =sin^2 pie/8 * sin^2 3pie/8 (using sin 2x = 2 sin x cos x)... now , cos(pie/2 - 3pie/8 )= sin 3pie/8....so cos pie/8 = sin 3pie/8.... therefore answer = sin^2 pie/8 * cos^2 pie/8.... =(1/4) (4 sin^2 pie/8 * cos^2 pie/8)... =(1/4)* sin^2 pie/4... =(1/4)*(1/2)=1/8...

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...