Functional Integration

Calculus Level 5

f ( x ) + f ( 1 1 x ) = tan 1 x , x R { 0 } f(x)+f \left(1-\dfrac{1}{x}\right)=\tan^{-1} x, \quad \forall x \in \mathbb{R} - \{0\}

If f : R R f:\mathbb{R} \rightarrow \mathbb{R} satisfies the functional equation above then 0 1 f ( x ) d x = a π b c \displaystyle\int_{0}^{1} f(x) \, dx=\frac{a \pi ^{b}}{c} , where a , b , c a,b,c are positive integers with a , c a,c coprime.

Find the value of a + b + c a+b+c .


The answer is 12.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Kushal Patankar
Mar 7, 2017

\begin{aligned} f(x)+f \left(1-\dfrac{1}{x}\right) & =\tan^{-1} (x) \tag{1} \\ \small\color{#3D99F6}{\text{Replace } x \text{ by } \dfrac{x-1}{x},\text{ we get}}\\ f \left(\dfrac{x-1}{x}\right)+f \left(\dfrac{1}{1-x}\right) & =\tan^{-1}\left(\dfrac{x-1}{x}\right)\tag{2} \\ \small\color{#3D99F6}{\text{Replace } x \text{ by } \dfrac{1}{1-x},\text{ we get}}\\ f \left(\dfrac{1}{1-x}\right)+f(x) & =\tan^{-1}\left(\dfrac{1}{1-x}\right)\tag{3} \\ \small\color{#3D99F6}{(1)-(2)+(3), \text{we get,}}\\ 2f(x) &= \tan^{-1} x + \tan^{-1} \left(\dfrac{1}{1-x}\right) -\tan^{-1}\left(\dfrac{x-1}{x}\right)\tag{4} \\ \small\color{#3D99F6}{\text{Replace } x \text{ by } (1-x),\text{ we get}} \\2f(1-x) &= \tan^{-1} (1-x) + \tan^{-1} \left(\dfrac{1}{x}\right) -\tan^{-1}\left(\dfrac{x}{x-1}\right)\tag{5} \\ \color{#3D99F6}{\text{Adding } eq^ns \space (4) \text{ and } (5)} \\ 2\left(f(x)+f(1-x)\right) & = \frac{3 \pi}{2} \tag{6} \\ f(x)+f(1-x)& = \frac{3 \pi}{4} \tag{7} \\ \color{#3D99F6}{\text{Now,}} & \\ \displaystyle\int_{0}^{1} f(x) \space \text{d}x &= \displaystyle\int_{0}^{1} f(1-x) = \displaystyle\int_{0}^{1} \frac{1}{2}\left(f(x)+f(1-x)\right) = \frac{3 \pi}{8}\\ \frac{3 \pi}{8} &=\frac{a \pi ^{b}}{c}, \text{ thus,} \\ a+b+c &= 3+8+1 =\boxed{12} \end{aligned}

Edit : \textbf{Edit :}

\begin{aligned} 2f(x) + 2f(1-x) &= \tan^{-1} x + \tan^{-1} \left(\dfrac{1}{1-x}\right) -\tan^{-1}\left(\dfrac{x-1}{x}\right) +\tan^{-1} (1-x) + \tan^{-1}\left(\dfrac{1}{x}\right) -\tan^{-1}\left(\dfrac{x}{x-1}\right)\quad \quad \quad \quad\tag{5.1}\\ 2(f(x) + f(1-x))&= \left( \tan^{-1} x + \tan^{-1}\left(\dfrac{1}{x}\right) \right)+\left(\tan^{-1} (1-x)+\tan^{-1} \left(\dfrac{1}{1-x}\right) \right)-\left(\tan^{-1}\left(\dfrac{x-1}{x}\right)+\tan^{-1}\left(\dfrac{x}{x-1}\right)\right)\tag{5.2} \end{aligned}

tan 1 x + tan 1 ( 1 x ) = π 2 , x ( 0 , 1 ) tan 1 ( 1 x ) + tan 1 ( 1 1 x ) = π 2 , x ( 0 , 1 ) tan 1 ( x 1 x ) + tan 1 ( x x 1 ) = π 2 , x ( 0 , 1 ) \begin{aligned}& \tan^{-1} x + \tan^{-1}\left(\dfrac{1}{x}\right) &= &\quad\dfrac{\pi}{2},&\quad\color{#3D99F6}{\forall x \in(0,1)}\\&\tan^{-1} (1-x)+\tan^{-1} \left(\dfrac{1}{1-x}\right) &=& \quad \dfrac{\pi}{2},&\quad\color{#3D99F6}{\forall x \in(0,1)} \\&\tan^{-1}\left(\dfrac{x-1}{x}\right)+\tan^{-1}\left(\dfrac{x}{x-1}\right) &=&- \dfrac{\pi}{2}, &\quad\color{#3D99F6}{\forall x \in(0,1)} \end{aligned}

I think there is a contradiction: Say x is in (0,1).You have shown that f(x)+f(1-x)=3π/4.

Let us take g(x)=f(x)+f(1-x). So, g(x)=3π/4. Now, given equation is f(x)+f(1-1/x)=arctan(x)

Replace x by 1/x. So, f(1/x)+f(1-x)=arctan(1/x).Now, add this equation with the equation given in question.

Then we get [f(x)+f(1-x)]+[f(1/x)+f(1-1/x)]=arctan(x) +arctan(1/x) That is, g(x)+g(1/x)=arctan(x)+arctan(1/x).

Now,g(x) is a constant function=3π/4.So,g(1/x)=3π/4.

Hence we get 3π/2= arctan(x)+arctan(1/x) which is not possible for any x.

Indraneel Mukhopadhyaya - 4 years, 3 months ago

Log in to reply

What makes you certain about g(1/x)=3 π \pi /4 its domain is not (0,1).

Kushal Patankar - 4 years, 3 months ago

Log in to reply

The argument I made works for all x>0, not necessarily for x belonging to (0,1). You can see that the argument I made his for all positive x.Assuming your result to be true, g(x) is a constant function which implies g(1/x) is 3π/4.

Indraneel Mukhopadhyaya - 4 years, 3 months ago

Log in to reply

@Indraneel Mukhopadhyaya My result is true for x in the range specified, g(x) for x> 1 is -pi/4, you can check that by considering equations 4 and 5 in (1,infinity) as the last two terms reduce to -pi because of domain implications.

I will add details in the solution in a few hours.

Kushal Patankar - 4 years, 3 months ago

@Indraneel Mukhopadhyaya Here is the graph of g(x) Here is the graph of g(x)

Kushal Patankar - 4 years, 3 months ago

Log in to reply

@Kushal Patankar Yes, I got it now. Thanks for the clarification. Everything is fine in your proof.

Indraneel Mukhopadhyaya - 4 years, 3 months ago

( link try to do this problem please

Sudhamsh Suraj - 4 years, 3 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...