f ( x ) + f ( 1 − x 1 ) = tan − 1 x , ∀ x ∈ R − { 0 }
If f : R → R satisfies the functional equation above then ∫ 0 1 f ( x ) d x = c a π b , where a , b , c are positive integers with a , c coprime.
Find the value of a + b + c .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
I think there is a contradiction: Say x is in (0,1).You have shown that f(x)+f(1-x)=3π/4.
Let us take g(x)=f(x)+f(1-x). So, g(x)=3π/4. Now, given equation is f(x)+f(1-1/x)=arctan(x)
Replace x by 1/x. So, f(1/x)+f(1-x)=arctan(1/x).Now, add this equation with the equation given in question.
Then we get [f(x)+f(1-x)]+[f(1/x)+f(1-1/x)]=arctan(x) +arctan(1/x) That is, g(x)+g(1/x)=arctan(x)+arctan(1/x).
Now,g(x) is a constant function=3π/4.So,g(1/x)=3π/4.
Hence we get 3π/2= arctan(x)+arctan(1/x) which is not possible for any x.
Log in to reply
What makes you certain about g(1/x)=3 π /4 its domain is not (0,1).
Log in to reply
The argument I made works for all x>0, not necessarily for x belonging to (0,1). You can see that the argument I made his for all positive x.Assuming your result to be true, g(x) is a constant function which implies g(1/x) is 3π/4.
Log in to reply
@Indraneel Mukhopadhyaya – My result is true for x in the range specified, g(x) for x> 1 is -pi/4, you can check that by considering equations 4 and 5 in (1,infinity) as the last two terms reduce to -pi because of domain implications.
I will add details in the solution in a few hours.
Log in to reply
@Kushal Patankar – Yes, I got it now. Thanks for the clarification. Everything is fine in your proof.
( link try to do this problem please
Problem Loading...
Note Loading...
Set Loading...
\begin{aligned} f(x)+f \left(1-\dfrac{1}{x}\right) & =\tan^{-1} (x) \tag{1} \\ \small\color{#3D99F6}{\text{Replace } x \text{ by } \dfrac{x-1}{x},\text{ we get}}\\ f \left(\dfrac{x-1}{x}\right)+f \left(\dfrac{1}{1-x}\right) & =\tan^{-1}\left(\dfrac{x-1}{x}\right)\tag{2} \\ \small\color{#3D99F6}{\text{Replace } x \text{ by } \dfrac{1}{1-x},\text{ we get}}\\ f \left(\dfrac{1}{1-x}\right)+f(x) & =\tan^{-1}\left(\dfrac{1}{1-x}\right)\tag{3} \\ \small\color{#3D99F6}{(1)-(2)+(3), \text{we get,}}\\ 2f(x) &= \tan^{-1} x + \tan^{-1} \left(\dfrac{1}{1-x}\right) -\tan^{-1}\left(\dfrac{x-1}{x}\right)\tag{4} \\ \small\color{#3D99F6}{\text{Replace } x \text{ by } (1-x),\text{ we get}} \\2f(1-x) &= \tan^{-1} (1-x) + \tan^{-1} \left(\dfrac{1}{x}\right) -\tan^{-1}\left(\dfrac{x}{x-1}\right)\tag{5} \\ \color{#3D99F6}{\text{Adding } eq^ns \space (4) \text{ and } (5)} \\ 2\left(f(x)+f(1-x)\right) & = \frac{3 \pi}{2} \tag{6} \\ f(x)+f(1-x)& = \frac{3 \pi}{4} \tag{7} \\ \color{#3D99F6}{\text{Now,}} & \\ \displaystyle\int_{0}^{1} f(x) \space \text{d}x &= \displaystyle\int_{0}^{1} f(1-x) = \displaystyle\int_{0}^{1} \frac{1}{2}\left(f(x)+f(1-x)\right) = \frac{3 \pi}{8}\\ \frac{3 \pi}{8} &=\frac{a \pi ^{b}}{c}, \text{ thus,} \\ a+b+c &= 3+8+1 =\boxed{12} \end{aligned}
Edit :
\begin{aligned} 2f(x) + 2f(1-x) &= \tan^{-1} x + \tan^{-1} \left(\dfrac{1}{1-x}\right) -\tan^{-1}\left(\dfrac{x-1}{x}\right) +\tan^{-1} (1-x) + \tan^{-1}\left(\dfrac{1}{x}\right) -\tan^{-1}\left(\dfrac{x}{x-1}\right)\quad \quad \quad \quad\tag{5.1}\\ 2(f(x) + f(1-x))&= \left( \tan^{-1} x + \tan^{-1}\left(\dfrac{1}{x}\right) \right)+\left(\tan^{-1} (1-x)+\tan^{-1} \left(\dfrac{1}{1-x}\right) \right)-\left(\tan^{-1}\left(\dfrac{x-1}{x}\right)+\tan^{-1}\left(\dfrac{x}{x-1}\right)\right)\tag{5.2} \end{aligned}
tan − 1 x + tan − 1 ( x 1 ) tan − 1 ( 1 − x ) + tan − 1 ( 1 − x 1 ) tan − 1 ( x x − 1 ) + tan − 1 ( x − 1 x ) = = = 2 π , 2 π , − 2 π , ∀ x ∈ ( 0 , 1 ) ∀ x ∈ ( 0 , 1 ) ∀ x ∈ ( 0 , 1 )