Is the information sufficient 2?

Calculus Level 4

105 2 16 = 2 π Γ ( x ) \large \frac{105\sqrt{2}}{16} = \sqrt{\frac{2}{\pi}} \Gamma(x)

What is the value of x x ?


Notation: Γ ( ) \Gamma(\cdot) denotes the Gamma function .


For more problems like this, try answering this set .


The answer is 4.5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Christian Daang
Mar 3, 2017

By Definition,

Γ ( n + 1 2 ) = ( 2 n 1 ) ! ! 2 n × π \displaystyle \Gamma\left( n + \cfrac{1}{2} \right) = \cfrac{(2n - 1)!!}{2^n} \times \sqrt{\pi} .

manipulating the equation in the problem above yields

Γ ( n + 1 2 ) = Γ ( x ) = 105 16 × π = 105 2 4 × π = ( 2 ( 4 ) 1 ) ! ! 2 4 × π = ( 2 n 1 ) ! ! 2 n × π n = 4 x = 4 + 1 2 = 9 2 = 4.5 \displaystyle \begin{aligned} \Gamma\left( n + \cfrac{1}{2} \right) & = \Gamma(x) = \cfrac{105}{16} \times \sqrt{\pi} \\ & = \cfrac{105}{2^4} \times \sqrt{\pi} = \cfrac{\big( 2(4) - 1 \big)!!}{2^4} \times \sqrt{\pi} = \cfrac{(2n - 1)!!}{2^n} \times \sqrt{\pi} \\ n & = 4 \\ & \boxed{x = 4 + \cfrac{1}{2} = \cfrac{9}{2} = 4.5} \end{aligned} .

105 2 16 = 2 π Γ ( x ) Γ ( x ) = 105 π 16 = 7 ! ! π 2 4 = Γ ( 9 2 ) See note. x = 9 2 = 4.5 \begin{aligned} \frac {105\sqrt 2}{16} & = \sqrt{\frac 2\pi} \Gamma (x) \\ \implies \Gamma (x) & = \frac {105\sqrt \pi}{16} = \frac {7!!\sqrt \pi}{2^4} = \Gamma \left(\frac 92\right) & \small \color{#3D99F6} \text{See note.} \\ \implies x & = \frac 92 = \boxed{4.5} \end{aligned}


Note:

Consider the following identity:

Γ ( s + 1 ) = s Γ ( s ) Γ ( 9 2 ) = 7 2 Γ ( 7 2 ) = 5 2 7 2 Γ ( 5 2 ) = 3 2 5 2 7 2 Γ ( 3 2 ) = 1 2 3 2 5 2 7 2 Γ ( 1 2 ) = 7 ! ! π 2 4 \small \begin{aligned} \Gamma(s+1) & = s\Gamma(s) \\ \implies \Gamma \left(\frac 92 \right) & = \frac 72 \Gamma \left(\frac 72 \right) = \frac 52 \cdot \frac 72 \Gamma \left(\frac 52 \right) = \frac 32 \cdot \frac 52 \cdot \frac 72 \Gamma \left(\frac 32 \right) = \frac 12 \cdot \frac 32 \cdot \frac 52 \cdot \frac 72 \Gamma \left(\frac 12 \right) = \frac {7!!\sqrt \pi}{2^4} \end{aligned}

Note that Γ ( 1 2 ) = π \small \Gamma \left(\dfrac 12 \right) = \sqrt \pi

Christian, for gamma function, you should use the reference in Brilliant.org.

Chew-Seong Cheong - 4 years, 3 months ago

Log in to reply

Ow. I see i see sir. Thanks for editing it out. :)

Christian Daang - 4 years, 3 months ago

Sir, can you help me to clarify that Γ ( 9 2 ) = 7 ! ! π 2 4 \Gamma \left( \dfrac{9}{2} \right) = \dfrac{7!!\sqrt{\pi}}{2^{4}} ? I'm not good at applying gamma function.

Fidel Simanjuntak - 4 years, 3 months ago

Log in to reply

see my solution sir. It is quite similar to sir @Chew-Seong Cheong 's solution. :)

Christian Daang - 4 years, 3 months ago

Log in to reply

Ah, i didn't see your solution. But i still can't understand why Γ ( n + 1 2 ) = ( 2 n 1 ) ! ! ) 2 n × π \Gamma \left( n + \dfrac{1}{2} \right) = \dfrac{(2n-1)!!)}{2^{n}} \times \sqrt{\pi} ? Or, is it the identity?

Fidel Simanjuntak - 4 years, 3 months ago

Log in to reply

@Fidel Simanjuntak It is a theory I think, but it is already proven. :)

Christian Daang - 4 years, 3 months ago

Log in to reply

@Christian Daang Can you give the proof? I am sorry to disturb you.

Fidel Simanjuntak - 4 years, 3 months ago

Log in to reply

@Fidel Simanjuntak I am sorry sir but i can't give any proof cause I just read a particular article, presenting this formula. XD I know it, but I don't have any proofs. XD

~ see the brilliant.org reference about gamma functions. I think, it is given there.

Christian Daang - 4 years, 3 months ago

Log in to reply

@Christian Daang I already read the reference in brilliant.org ,but it's only given that Γ ( 1 2 ) = π \Gamma \left( \dfrac{1}{2} \right) = \sqrt{\pi} . The note that @Chew-Seong Cheong added is only the way how to get Γ ( 9 2 ) = 7 ! ! π 2 4 \Gamma \left( \dfrac{9}{2} \right) = \dfrac{7!!\sqrt{\pi}}{2^{4}} , not the price of Γ ( n + 1 2 ) = ( 2 n 1 ) ! ! × π 2 n \Gamma \left( n + \dfrac{1}{2} \right) = \dfrac{(2n-1)!! \times \sqrt{\pi}}{2^{n}} .

Fidel Simanjuntak - 4 years, 3 months ago

Log in to reply

@Fidel Simanjuntak Note that 9 2 = 4 + 1 2 \frac 92 = 4 + \frac 12 . If I have started with n n , I would have shown it.

Chew-Seong Cheong - 4 years, 3 months ago

Log in to reply

@Chew-Seong Cheong Ah, I see. Thank you sir!

Fidel Simanjuntak - 4 years, 3 months ago

@Fidel Simanjuntak From the identity

Γ ( s ) = ( s 1 ) Γ ( s 1 ) \Gamma (s) = (s-1) \Gamma (s-1)

We have

Γ ( n + 1 2 ) = ( n 1 2 ) Γ ( n 1 2 ) = ( n 1 2 ) ( n 3 2 ) ( n ( 2 n 1 ) 2 ) Γ ( 1 2 ) = ( 2 n 1 ) ( 2 n 3 ) ( 2 n 5 ) 5 3 1 2 n × π = ( 2 n 1 ) ! ! × π 2 n Q . E . D . \begin{aligned} \Gamma \left( n + \dfrac 12 \right) &= \left( n - \dfrac 12 \right) \Gamma \left( n - \dfrac 12 \right) \\ &= \left( n - \dfrac 12 \right) \left( n - \dfrac 32 \right) \cdots \left( n - \dfrac{(2n-1)}{2} \right) \Gamma \left( \dfrac 12 \right) \\ &= \dfrac{(2n-1)(2n-3)(2n-5)\cdots \ \cdot 5 \cdot 3 \cdot 1}{2^n} \times \sqrt{\pi} \\ &= \dfrac{(2n-1)!! \times \sqrt{\pi}}{2^n} \\ & & \mathbf{Q.E.D.} \end{aligned}

Tapas Mazumdar - 4 years, 2 months ago

Log in to reply

@Tapas Mazumdar Nice proof! Thank you!!

Fidel Simanjuntak - 4 years, 2 months ago

Log in to reply

@Fidel Simanjuntak You're welcome. :-)

Tapas Mazumdar - 4 years, 2 months ago

See the note I have added.

Chew-Seong Cheong - 4 years, 3 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...