γ , ( Γ ) \gamma,(\Gamma) -day Problem 1

Calculus Level 4

0 t 7 e t 2 d t = ? \int_0^{\infty}\sqrt{\frac{t^7}{e^{\frac{t}{2}}}}\,dt = \, ?

Give your answer to 3 decimal places.


This problem is for Daily challenge of greek alphabets


The answer is 5955.44.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Ayush Verma
Mar 23, 2015

I = 0 t 7 / 2 e t / 4 d t = 2 9 0 x 7 / 2 e x d x ( t 4 = x ) = 2 9 0 x 9 2 1 e x d x = 2 9 Γ ( 9 / 2 ) = 2 9 Γ ( 4 + 1 2 ) = 2 9 4 4 × 8 ! 4 ! Γ ( 1 2 ) ( a s Γ ( n + 1 2 ) = 2 n ! 4 n n ! Γ ( 1 2 ) ) = 5955.44 ( a s Γ ( 1 2 ) = π ) I=\int _{ 0 }^{ \infty }{ { t }^{ 7/2 }{ e }^{ -t/4 } } dt\\ \\ ={ 2 }^{ 9 }\int _{ 0 }^{ \infty }{ { x }^{ 7/2 }{ e }^{ -x } } dx\quad \quad \left( \cfrac { t }{ 4 } =x \right) \\ \\ ={ 2 }^{ 9 }\int _{ 0 }^{ \infty }{ { x }^{ \cfrac { 9 }{ 2 } -1 }{ e }^{ -x } } dx\\ \\ ={ 2 }^{ 9 }\Gamma \left( 9/2 \right) ={ 2 }^{ 9 }\Gamma \left( 4+\cfrac { 1 }{ 2 } \right) \\ \\ =\cfrac { { 2 }^{ 9 } }{ { 4 }^{ 4 } } \times \cfrac { 8! }{ 4! } \Gamma \left( \cfrac { 1 }{ 2 } \right) \quad \quad \quad \quad \quad \left( as\quad \Gamma \left( n+\cfrac { 1 }{ 2 } \right) =\cfrac { 2n! }{ { 4 }^{ n }n! } \Gamma \left( \cfrac { 1 }{ 2 } \right) \right) \\ \\ =5955.44\quad \quad \quad \quad (as\quad \Gamma \left( \cfrac { 1 }{ 2 } \right) =\sqrt { \pi } )

Shriram Lokhande
Aug 7, 2014

We will use the following Γ ( x ) = 0 t x 1 e t d t \Gamma(x)=\int_0^{\infty}t^{x-1}e^{-t}\,dt Γ ( 1 2 + n ) = ( 2 n 1 ) ! ! 2 n π \Gamma(\frac{1}{2}+n)=\frac{(2n-1)!!}{2^n}\sqrt{\pi} The integral can be written as I = 0 t 7 2 e t 2 d t I=\int_0^{\infty}t^{\frac{7}{2}}e^{-\frac{t}{2}}\,dt Take y = t 2 y=\frac{t}{2} I = 2 7 2 0 y 9 2 1 e y d t \Rightarrow I=2^{\frac{7}{2}}\int_0^{\infty}y^{\frac{9}{2}-1}e^{-y}\,dt I = 2 7 2 Γ ( 9 2 ) = 2 7 2 Γ ( 1 2 + 4 ) \Rightarrow I=2^{\frac{7}{2}}\Gamma(\frac{9}{2})=2^{\frac{7}{2}}\Gamma(\frac{1}{2}+4) I = 2 1 2 + 3 ( 7 ) ! ! 2 4 π = 105 2 π 2 = 131.59 \Rightarrow I=2^{\frac{1}{2}+3}\frac{(7)!!}{2^4}\sqrt{\pi}=\frac{105\sqrt{2\pi}}{2}=\boxed{131.59}

The integral in the problem is actually 0 t 7 e t 2 d t = 0 t 7 2 e t 4 d t . \int_0^\infty \sqrt{\frac{t^7}{e^{\frac{t}{2}}}} \: dt = \int_0^\infty t^{\frac{7}{2}} e^{-\frac{t}{4}} \: dt.

Jon Haussmann - 6 years, 3 months ago

Log in to reply

@Jon Haussmann exactly! and it evaluates to 5955.438 5955.438

Kunal Gupta - 6 years, 3 months ago

Log in to reply

thats correct , the answer is 5955.44 (checked with wolfram alpha)

Pablo Torres - 6 years, 3 months ago

Thanks. I have updated the answer to 5955.44.

In future, if you spot any errors with a problem, you can “report” it by selecting "report problem" in the “dot dot dot” menu in the lower right corner. You will get a more timely response that way.

Calvin Lin Staff - 6 years, 3 months ago

Log in to reply

Sir , I had edited the problem before you updated the answer

Shriram Lokhande - 6 years, 3 months ago

Log in to reply

@Shriram Lokhande Given that this problem is several months old, I would prefer that it is left as is. I was not aware that you edited the problem, as you did not reply to any of the comments or reports.

I have reverted back the problem to it's original state.

Calvin Lin Staff - 6 years, 2 months ago

Relevant wiki: Gamma Function

I = 0 t 7 e t 2 d t = 0 t 7 2 e t 4 d t Let x = t 4 4 d x = d t = 2 9 0 x 7 2 e x d x Gamma function Γ ( s ) = 0 t s 1 e t d t = 2 9 Γ ( 9 2 ) Using Γ ( 1 + s ) = s Γ ( s ) repeatedly = 2 9 1 2 3 2 5 2 7 2 Γ ( 1 2 ) and Γ ( 1 2 ) = π = 3360 π 5955.445 \begin{aligned} I & = \int_0^\infty \sqrt{\frac {t^7}{e^\frac t2}} dt \\ & = \int_0^\infty t^\frac 72 e^{-\frac t4} \ dt & \small \color{#3D99F6} \text{Let }x = \frac t4 \implies 4 \ dx = dt \\ & = 2^9 \int_0^\infty x^\frac 72 e^{-x} \ dx & \small \color{#3D99F6} \text{Gamma function }\Gamma (s) = \int_0^\infty t^{s-1}e^{-t}\ dt \\ & = 2^9 \Gamma \left(\frac 92\right) & \small \color{#3D99F6} \text{Using }\Gamma(1+s) = s\Gamma(s) \text{ repeatedly} \\ & = 2^9 \cdot \frac 12 \cdot \frac 32 \cdot \frac 52 \cdot \frac 72 \cdot \color{#3D99F6} \Gamma \left(\frac 12\right) & \small \color{#3D99F6} \text{and }\Gamma \left(\frac 12\right) = \sqrt \pi \\ & = 3360 \color{#3D99F6} \sqrt \pi \\ & \approx \boxed{5955.445} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...