Gauss Returns!

Algebra Level 2

S = 0.1 + 0.02 + 0.003 + 0.0004 + + n 1 0 n + S = 0.1 + 0.02 + 0.003 + 0.0004 + \cdots + \dfrac n{10^n} + \cdots

Given that the infinite sum S S can be expressed as a b \frac ab , where a a and b b are coprime positive integers, find a + b a+b .


The answer is 91.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

6 solutions

Viki Zeta
Sep 15, 2016

S = 0.1 + 0.02 + 0.003 + 0.0004 + 10 S = 1 + 0.2 + 0.03 + 0.004 + S = 0.1 0.02 0.003 0.0004 9 S = 1 + 0.1 + 0.001 + 0.0001 + 0.00001 + The above is in geometric progression where a 1 = 1 , r = 1 10 Therefore as GP tends to infinity 9 S = a 1 1 r 9 S = 1 1 1 10 9 S = 1 10 1 10 9 S = 10 9 S = 10 81 Therefore the answer is 10 + 81 = 91 S=0.1+0.02+0.003+0.0004+\ldots\\ 10S=1+0.2+0.03+0.004+\ldots\\ -S=-0.1-0.02-0.003-0.0004\ldots\\ 9S=1+0.1+0.001+0.0001+0.00001+\ldots\\ \text{The above is in geometric progression where } a_1=1, r=\dfrac{1}{10}\\ \text{Therefore as GP tends to infinity}\\ 9S=\dfrac{a_1}{1-r}\\ 9S=\dfrac{1}{1-\dfrac{1}{10}}\\ 9S=\dfrac{1}{\dfrac{10-1}{10}}\\ 9S=\dfrac{10}{9}\\ S=\dfrac{10}{81}\\ \text{Therefore the answer is 10 + 81 = }\fbox{ 91 }

Sabhrant Sachan
Sep 15, 2016

There are Millions of methods to solve this question, I think this is the simplest \text{There are Millions of methods to solve this question, I think this is the simplest }

S = 0.12345 1st Equation 10 S = 1.23456 2nd Equation Subtract the two equations 9 S = 10 × 0.1111 S = 10 9 × 1 9 = 10 81 S=0.12345\cdots \quad \quad \small\text{ 1st Equation } \\ 10S=1.23456\cdots \quad \quad \small \text{ 2nd Equation } \\ \text{Subtract the two equations } \\ 9S=10\times 0.1111\cdots \\ S=\dfrac{10}{9} \times \dfrac{1}{9} = \dfrac{10}{81}

yes bro , i did the same (exactly) way!! you are awesome!

A Former Brilliant Member - 4 years, 9 months ago

Log in to reply

Thank you :)

Sabhrant Sachan - 4 years, 9 months ago

Log in to reply

what is the difference between metrix and determinant methods to solve a system of equations. because my teacher crossed whole question because of that , plz tell.

A Former Brilliant Member - 4 years, 9 months ago

Log in to reply

@A Former Brilliant Member i know only the determinant method to solve system of equations :/

Sabhrant Sachan - 4 years, 8 months ago

S = 0.1 + 0.02 + 0.003 + 0.0004 + . . . S= 0.1 + 0.02 + 0.003 + 0.0004 + ...

S = ( 0.1 ) + 2 ( 0.1 ) 2 + 3 ( 0.1 ) 3 + 4 ( 0.1 ) 4 + . . . S= (0.1) + 2(0.1)^2 + 3(0.1)^3 + 4(0.1)^4 + ...

Let x = 0.1 x=0.1 , then:

S = x + 2 x 2 + 3 x 3 + 4 x 4 + . . . S = x + 2x^2 + 3x^3 + 4x^4 + ...

S = x + 3 x 2 x 2 + 4 x 3 x 3 + 5 x 4 x 4 + . . . S = x + 3x^2 - x^2 + 4x^3 - x^3 + 5x^4 - x^4 + ...

S = x + ( 3 x 2 + 4 x 3 + 5 x 4 + . . . ) ( x 2 + x 3 + x 4 + . . . ) S = x + (3x^2 + 4x^3 + 5x^4 + ...) - (x^2 + x^3 + x^4 + ...)

S = x + ( d d x x 3 + d d x x 4 + d d x x 5 + . . . ) ( x 2 + x 3 + x 4 + . . . ) S = x + ( \frac{d}{dx} x^3 + \frac{d}{dx} x^4 + \frac{d}{dx} x^5 + ...) - (x^2 + x^3 + x^4 + ...)

S = x + d d x ( x 3 + x 4 + x 5 + . . . ) ( x 2 + x 3 + x 4 + . . . ) S = x + \frac{d}{dx} (x^3 + x^4 + x^5 + ...) - (x^2 + x^3 + x^4 + ...)

Since x = 0.1 x=0.1 , both x 3 + x 4 + x 5 + . . . x^3 + x^4 + x^5 + ... and x 2 + x 3 + x 4 + . . . x^2 + x^3 + x^4 + ... are infinite geometric progressions. ( r = 0.1 < 1 ) (|r|=0.1<1) . Hence:

S = x + d d x ( x 3 1 x ) + x 2 1 x S = x + \frac{d}{dx} (\frac{x^3}{1-x}) + \frac{x^2}{1-x}

S = x ( 1 x ) 2 S = \frac{x}{(1-x)^2}

S = 0.1 ( 1 0.1 ) 2 = 10 81 a + b = 91 S = \frac{0.1}{(1-0.1)^2} = \frac{10}{81} \implies \boxed{a+b = 91}

Tapas Mazumdar
Sep 15, 2016

We have,

S = 1 10 + 2 1 0 2 + 3 1 0 3 + S 10 = 1 1 0 2 + 2 1 0 3 + 3 1 0 4 + Shifting each term one place to the right ______________________________________________ 9 S 10 = 1 10 + 1 1 0 2 + 1 1 0 3 + 1 1 0 4 ______________________________________________ 9 S 10 = 1 10 1 1 10 Using S = a 1 r , w h e r e r < 1 9 S 10 = 1 9 S = 10 81 = a b a = 10 and b = 81 ~~~~~~~~~~S = \dfrac{1}{10} + \dfrac{2}{10^{2}} + \dfrac{3}{10^{3}} + \cdots \infty \\ ~~~- \dfrac{S}{10} = ~~~~~~~~~~ \dfrac{1}{10^{2}} + \dfrac{2}{10^{3}} + \dfrac{3}{10^{4}} + \cdots \infty~~~~~~~~~~~~~~~~~~~~~~ \color{maroon}{\small\text{Shifting each term one place to the right}} \\ \text{\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_} \\ ~~~~~~~~ \dfrac{9S}{10} = \dfrac{1}{10} + \dfrac{1}{10^{2}} + \dfrac{1}{10^{3}} + \dfrac{1}{10^{4}} \cdots \infty \\ \text{\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_} \\ \Longrightarrow \dfrac{9S}{10} = \dfrac{\frac{1}{10}}{1-\frac{1}{10}} ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ \color{#302B94}{\boxed{\text{Using}~~ S_\infty = \dfrac{a}{1-r}, ~~{where}~~ |r|<1}} \\ \Longrightarrow \dfrac{9S}{10} = \dfrac{1}{9} \\ \Longrightarrow S = \dfrac{10}{81} = \dfrac{a}{b} \\ \therefore a=10 ~~~ \text{and} ~~~ b=81

Hence, a + b = 91 a+b=\boxed{91}

We have to find:

1 10 + 2 100 + 3 1000 + . . . \implies \dfrac{1}{10}+\dfrac{2}{100}+\dfrac{3}{1000}+ \ ...

Using Arithmetic-Geometric progression .

( 1 10 ) ( 1 + 2 10 + 3 100 + . . . ) \implies \left(\dfrac{1}{10}\right)\left(1+\dfrac{2}{10}+\dfrac{3}{100}+ \ ...\right)

Here a = 1 a=1 , d = 1 d=1 and r = 1 10 r=\dfrac{1}{10} .

= ( 1 10 ) ( 1 1 1 10 + 1 × 1 10 ( 1 1 10 ) 2 ) =\left(\dfrac{1}{10}\right)\color{#20A900}{\left(\dfrac{1}{1-\frac{1}{10}}+\dfrac{1×\frac{1}{10}}{\left(1-\frac{1}{10}\right)^2}\right)}

1 10 × 100 81 = 10 81 \implies \dfrac{1}{10}×\color{#20A900}{\dfrac{100}{81}}=\dfrac{10}{81}

a + b = 10 + 81 = 91 \therefore a+b=10+81=\color{#BA33D6}{\boxed{91}} .

I also did the same way using the formula S = a 1 r + d r ( 1 r ) 2 S_{\infty}=\dfrac{a}{1-r}+\dfrac{dr}{(1-r)^2}

Niranjan Khanderia - 4 years, 8 months ago
Erik Davis
Oct 31, 2016

I tried a telescoping series approach on a finite version of the sum then applied the limit as k approaches infinity:

So, the sum a+b is 91.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...