Generalisation makes things better!

Calculus Level 4

lim x β 1 cos ( x 2 + 56 x + 1 ) ( x β ) 2 \large \lim_{x \to \beta} \frac{1 - \cos (x^{2} + 56x +1)}{(x - \beta)^{2}}

Consider a polynomial x 2 + 56 x + 1 x^{2} + 56x + 1 , let the roots of the polynomial be α \alpha and β \beta .

Find the value of above expression.


The answer is 1566.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Rishabh Jain
Feb 20, 2016

Let L \mathfrak{L} denote the given limit. Writing x 2 + 56 x + 1 = ( x α ) ( x β ) \color{#3D99F6}{x^2+56x+1=(x-\alpha)(x-\beta)} and using lim x 0 1 cos x x 2 = 1 2 \small{\color{#3D99F6}{\lim_{x\rightarrow 0}\dfrac{1-\cos x}{x^2}=\dfrac{1}{2}}}

L = lim x β ( 1 cos ( ( x α ) ( x β ) ) ( ( x α ) 2 ( x β ) 2 ) ( x α ) 2 ) \large \mathfrak{L}= \lim_{x \to \beta} (\frac{1 - \cos (\color{#D61F06}{(x-\alpha)(x-\beta)})}{(\color{#D61F06}{(x-\alpha)^2(x - \beta)^2})}(x-\alpha)^2) = ( β α ) 2 2 = ( β + α ) 2 2 2 α β \Large =\dfrac{(\beta-\alpha)^2}{2}=\dfrac{(\beta+\alpha)^2}{2}-2\alpha\beta = ( 56 ) 2 2 2 ( α + β = 56 , α β = 1 ) \large =\dfrac{(-56)^2}{2}-2~~~(\small{\color{#20A900}{\because \alpha+\beta=-56, \alpha\beta=1})} = 1566 \huge =\boxed{\color{#007fff}{1566}}

That's a great way to approach the problem !:-)

Pulkit Gupta - 5 years, 3 months ago

There is one mistake in your solution, you have written ( 56 ) 2 2 = 1566 (-56)^2-2=1566 instead it should be ( 56 ) 2 2 2 = 1566 \frac{(-56)^2}{2}-2=1566

Akshay Yadav - 5 years, 3 months ago

Log in to reply

Thanks..... Edited

Rishabh Jain - 5 years, 3 months ago

Log in to reply

Just saw you are from Ajmer....which class???Are you former csquarian??

Mohit Gupta - 5 years, 3 months ago

Log in to reply

@Mohit Gupta 12.. Yeah in 8-9 I was in C-Square

Rishabh Jain - 5 years, 3 months ago

@Rishabh Cool in which school have you studied?

Akshay Yadav - 5 years, 3 months ago

Log in to reply

@Akshay Yadav MPS.. ..........

Rishabh Jain - 5 years, 3 months ago
Akshay Yadav
Feb 20, 2016

lim x β 1 cos ( x 2 + 56 x + 1 ) ( x β ) 2 \lim_{x \to \beta} \frac{1-\cos(x^2+56x+1)}{(x-\beta)^2}

The above limit has immediate form 0 0 \frac{0}{0} hence we can apply the L'Hospital rule ,

Using the L'Hospital rule,

lim x β sin ( x 2 + 56 x + 1 ) ( 2 ) ( x + 28 ) 2 ( x β ) \lim_{x \to \beta} \frac{\sin(x^2+56x+1)(2)(x+28)}{2(x-\beta)}

Again applying the rule,

lim x β 2 ( x + 28 ) 2 cos ( x 2 + 56 x + 1 ) + sin ( x 2 + 56 x + 1 ) \lim_{x \to \beta} 2(x+28)^2\cos(x^2+56x+1)+\sin(x^2+56x+1)

lim x β 2 ( x 2 + 56 x + 1 + 783 ) cos ( x 2 + 56 x + 1 ) + sin ( x 2 + 56 x + 1 ) \lim_{x \to \beta} 2(x^2+56x+1+783)\cos(x^2+56x+1)+\sin(x^2+56x+1)

2 ( 0 + 783 ) ( 1 ) + 0 2(0+783)(1)+0

1566 \boxed{1566}

Congratulations @Mohit Gupta for getting selected in NTSE!

Akshay Yadav - 5 years, 3 months ago

Log in to reply

Thanks....but i do not deserve it.....i just got selected by 1 mark and among the last in the list.... :( :( ....worst result of my 10th class after ijso..... bhavesh hv done a good job....lets see if i could improve it in 2nd level....

Mohit Gupta - 5 years, 3 months ago

In the first step it should be ( 2 x + 56 ) (2x+56) instead of ( 2 x + 28 ) (2x+28) .

Anik Mandal - 5 years, 3 months ago

Log in to reply

Thank you for spotting the error. I have corrected it.

Akshay Yadav - 5 years, 3 months ago

L = lim x β 1 cos ( x 2 + 56 x + 1 ) ( x β ) 2 = lim x β 2 sin 2 ( x 2 + 56 x + 1 2 ) ( x β ) 2 L = \displaystyle \lim_{x\rightarrow \beta} \dfrac{1-\cos \left(x^{2}+56x+1\right)}{(x-\beta)^{2}} = \displaystyle \lim_{x\rightarrow \beta} \dfrac{2\sin^{2}\left(\dfrac{x^{2}+56x+1}{2}\right)}{(x-\beta)^{2}}
Multiplying and dividing by x 2 + 56 x + 1 4 \dfrac{x^{2}+56x+1}{4}
L = lim x β 2 sin 2 ( x 2 + 56 x + 1 2 ) ( x 2 + 56 x + 1 2 ) 2 2 ( x 2 + 56 x + 1 ) 2 4 ( x β ) 2 L = \displaystyle \lim_{x\rightarrow \beta} \dfrac{2 \sin^{2} \left(\dfrac{x^{2}+56x+1}{2}\right)}{\left(\dfrac{x^{2}+56x+1}{2}\right)^{2}}\cdot \dfrac{2\left(x^{2}+56x+1\right)^{2}}{4(x-\beta)^{2}}
Provided that both the limits are individually finite, we can split them as follows,
L = lim f ( x ) 0 ( sin f ( x ) f ( x ) ) 2 lim x β 2 ( x 2 + 56 x + 1 ) 2 4 ( x β ) 2 = 1 × lim x β ( x 2 + 56 x + 1 ) 2 2 ( x β ) 2 L = \displaystyle \lim_{f(x)\rightarrow 0} \left(\dfrac{\sin f(x)}{f(x)}\right)^{2} \displaystyle \lim_{x\rightarrow \beta} \dfrac{2\left(x^{2}+56x+1\right)^{2}}{4(x-\beta)^{2}} = 1 \times\lim_{x\rightarrow \beta} \dfrac{\left(x^{2}+56x+1\right)^{2}}{2(x-\beta)^{2}}
Substituting, x 2 + 56 x + 1 = ( x α ) ( x β ) x^{2} + 56x + 1 = (x-\alpha)(x-\beta) ,
L = lim x β ( x α ) 2 ( x β ) 2 2 ( x β ) 2 = lim x β ( x α ) 2 2 = ( β α ) 2 2 L = \displaystyle \lim_{x\rightarrow \beta} \dfrac{(x-\alpha)^{2}(x-\beta)^{2}}{2(x-\beta)^{2}} = \displaystyle \lim_{x\rightarrow \beta} \dfrac{(x-\alpha)^{2}}{2} = \dfrac{(\beta-\alpha)^{2}}{2}
For a given quadratic equation,
a x 2 + b x + c = 0 ax^{2} + bx + c = 0 with roots α , β \alpha , \beta
β α = ± b 2 4 a c a \beta - \alpha = \pm \dfrac{\sqrt{b^{2}-4ac}}{a}
L = ( ± 5 6 2 4 1 ) 2 2 = 5 6 2 4 2 = 3136 4 2 = 3132 2 = 1566 \therefore L = \dfrac{\left(\dfrac{\pm \sqrt{56^{2}-4}}{1}\right)^{2}}{2} = \dfrac{56^{2}-4}{2} = \dfrac{3136-4}{2} = \dfrac{3132}{2} = 1566




0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...